Year |
Citation |
Score |
2024 |
Burman N, Belukhina S, Depardieu F, Wilkinson RA, Skutel M, Santiago-Frangos A, Graham AB, Livenskyi A, Chechenina A, Morozova N, Zahl T, Henriques WS, Buyukyoruk M, Rouillon C, Saudemont B, et al. A virally-encoded tRNA neutralizes the PARIS antiviral defence system. Nature. PMID 39111359 DOI: 10.1038/s41586-024-07874-3 |
0.607 |
|
2024 |
Burman N, Belukhina S, Depardieu F, Wilkinson RA, Skutel M, Santiago-Frangos A, Graham AB, Livenskyi A, Chechenina A, Morozova N, Zahl T, Henriques WS, Buyukyoruk M, Rouillon C, Shyrokova L, et al. Viral proteins activate PARIS-mediated tRNA degradation and viral tRNAs rescue infection. Biorxiv : the Preprint Server For Biology. PMID 38260645 DOI: 10.1101/2024.01.02.573894 |
0.608 |
|
2023 |
Santiago-Frangos A, Henriques WS, Wiegand T, Gauvin CC, Buyukyoruk M, Graham AB, Wilkinson RA, Triem L, Neselu K, Eng ET, Lander GC, Wiedenheft B. Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays. Nature Structural & Molecular Biology. PMID 37710013 DOI: 10.1038/s41594-023-01097-2 |
0.609 |
|
2023 |
Wiegand T, Wilkinson R, Santiago-Frangos A, Lynes M, Hatzenpichler R, Wiedenheft B. Functional and Phylogenetic Diversity of Cas10 Proteins. The Crispr Journal. PMID 36912817 DOI: 10.1089/crispr.2022.0085 |
0.661 |
|
2022 |
Nemudraia A, Nemudryi A, Buyukyoruk M, Scherffius AM, Zahl T, Wiegand T, Pandey S, Nichols JE, Hall LN, McVey A, Lee HH, Wilkinson RA, Snyder LR, Jones JD, Koutmou KS, ... Santiago-Frangos A, et al. Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. Nature Communications. 13: 7762. PMID 36522348 DOI: 10.1038/s41467-022-35445-5 |
0.767 |
|
2022 |
Santiago-Frangos A, Nemudryi A, Nemudraia A, Wiegand T, Nichols JE, Krishna P, Scherffius AM, Zahl TR, Wilkinson RA, Wiedenheft B. CRISPR-Cas, Argonaute proteins and the emerging landscape of amplification-free diagnostics. Methods (San Diego, Calif.). 205: 1-10. PMID 35690249 DOI: 10.1016/j.ymeth.2022.06.002 |
0.71 |
|
2022 |
Roca J, Santiago-Frangos A, Woodson SA. Diversity of bacterial small RNAs drives competitive strategies for a mutual chaperone. Nature Communications. 13: 2449. PMID 35508531 DOI: 10.1038/s41467-022-30211-z |
0.644 |
|
2022 |
Nemudraia A, Nemudryi A, Buyukyoruk M, Scherffius A, Zahl T, Wiegand T, Pandey S, Nichols J, Hall L, McVey A, Lee H, Wilkinson R, Snyder L, Jones J, Koutmou K, ... Santiago-Frangos A, et al. Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. Research Square. PMID 35475170 DOI: 10.21203/rs.3.rs-1466718/v1 |
0.764 |
|
2021 |
Santiago-Frangos A, Buyukyoruk M, Wiegand T, Krishna P, Wiedenheft B. Distribution and phasing of sequence motifs that facilitate CRISPR adaptation. Current Biology : Cb. PMID 34174210 DOI: 10.1016/j.cub.2021.05.068 |
0.538 |
|
2021 |
Santiago-Frangos A, Hall LN, Nemudraia A, Nemudryi A, Krishna P, Wiegand T, Wilkinson RA, Snyder DT, Hedges JF, Cicha C, Lee HH, Graham A, Jutila MA, Taylor MP, Wiedenheft B. Intrinsic Signal Amplification by Type-III CRISPR-Cas Systems Provides a Sequence-Specific SARS-CoV-2 Diagnostic. Cell Reports. Medicine. 100319. PMID 34075364 DOI: 10.1016/j.xcrm.2021.100319 |
0.76 |
|
2020 |
Hirschi M, Lu WT, Santiago-Frangos A, Wilkinson R, Golden SM, Davidson AR, Lander GC, Wiedenheft B. AcrIF9 tethers non-sequence specific dsDNA to the CRISPR RNA-guided surveillance complex. Nature Communications. 11: 2730. PMID 32483187 DOI: 10.1038/S41467-020-16512-1 |
0.711 |
|
2020 |
Panja S, Małecka EM, Santiago-Frangos A, Woodson SA. Quantitative Analysis of RNA Chaperone Activity by Native Gel Electrophoresis and Fluorescence Spectroscopy. Methods in Molecular Biology (Clifton, N.J.). 2106: 19-39. PMID 31889249 DOI: 10.1007/978-1-0716-0231-7_2 |
0.648 |
|
2019 |
Santiago-Frangos A, Fröhlich KS, Jeliazkov JR, Małecka EM, Marino G, Gray JJ, Luisi BF, Woodson SA, Hardwick SW. Hfq structure reveals a conserved mechanism of RNA annealing regulation. Proceedings of the National Academy of Sciences of the United States of America. PMID 31076551 DOI: 10.1073/pnas.1814428116 |
0.588 |
|
2019 |
Rollins MF, Chowdhury S, Carter J, Golden SM, Miettinen HM, Santiago-Frangos A, Faith D, Lawrence CM, Lander GC, Wiedenheft B. Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry. Molecular Cell. PMID 30872121 DOI: 10.1016/J.Molcel.2019.02.001 |
0.674 |
|
2019 |
Santiago-Frangos A, Wiegand T, Wiedenheft B. Cas9 slide-and-seek for phage defense and genome engineering. The Embo Journal. 38. PMID 30733242 DOI: 10.15252/Embj.2019101474 |
0.575 |
|
2019 |
Santiago-Frangos A, Fröhlich KS, Jeliazkov JR, Małecka EM, Marino G, Gray JJ, Luisi BF, Woodson SA, Hardwick SW. Caulobacter crescentus Hfq structure reveals a conserved mechanism of RNA annealing regulation Proceedings of the National Academy of Sciences of the United States of America. 116: 10978-10987. DOI: 10.2210/Pdb6Gwk/Pdb |
0.361 |
|
2018 |
Woodson SA, Panja S, Santiago-Frangos A. Proteins That Chaperone RNA Regulation. Microbiology Spectrum. 6. PMID 30051798 DOI: 10.1128/microbiolspec.RWR-0026-2018 |
0.639 |
|
2018 |
Santiago-Frangos A, Woodson SA. Hfq chaperone brings speed dating to bacterial sRNA. Wiley Interdisciplinary Reviews. Rna. e1475. PMID 29633565 DOI: 10.1002/wrna.1475 |
0.646 |
|
2017 |
Santiago-Frangos A, Jeliazkov JR, Gray JJ, Woodson SA. Acidic C-terminal domains autoregulate the RNA chaperone Hfq. Elife. 6. PMID 28826489 DOI: 10.7554/Elife.27049 |
0.624 |
|
2016 |
Santiago-Frangos A, Kavita K, Schu DJ, Gottesman S, Woodson SA. C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proceedings of the National Academy of Sciences of the United States of America. PMID 27681631 DOI: 10.1073/Pnas.1613053113 |
0.647 |
|
2015 |
Panja S, Santiago-Frangos A, Schu DJ, Gottesman S, Woodson SA. Acidic residues in the Hfq chaperone increase the selectivity of sRNA binding and annealing. Journal of Molecular Biology. PMID 26196441 DOI: 10.1016/J.Jmb.2015.07.010 |
0.614 |
|
Show low-probability matches. |