Year |
Citation |
Score |
2021 |
Abeln F, Chuck CJ. The history, state of the art and future prospects for oleaginous yeast research. Microbial Cell Factories. 20: 221. PMID 34876155 DOI: 10.1186/s12934-021-01712-1 |
0.334 |
|
2020 |
Hongthong S, Leese HS, Chuck CJ. Valorizing Plastic-Contaminated Waste Streams through the Catalytic Hydrothermal Processing of Polypropylene with Lignocellulose. Acs Omega. 5: 20586-20598. PMID 32832812 DOI: 10.1021/acsomega.0c02854 |
0.321 |
|
2020 |
Abeln F, Hicks RH, Auta H, Moreno-Beltrán M, Longanesi L, Henk DA, Chuck CJ. Semi-continuous pilot-scale microbial oil production with on starch hydrolysate. Biotechnology For Biofuels. 13: 127. PMID 32695223 DOI: 10.1186/S13068-020-01756-2 |
0.411 |
|
2020 |
Parsons S, Allen MJ, Chuck CJ. Coproducts of algae and yeast-derived single cell oils: A critical review of their role in improving biorefinery sustainability. Bioresource Technology. 122862. PMID 32037189 DOI: 10.1016/J.Biortech.2020.122862 |
0.415 |
|
2020 |
Yu IKM, Chen H, Abeln F, Auta H, Fan J, Budarin VL, Clark JH, Parsons S, Chuck CJ, Zhang S, Luo G, Tsang DCW. Chemicals from lignocellulosic biomass: A critical comparison between biochemical, microwave and thermochemical conversion methods Critical Reviews in Environmental Science and Technology. 1-54. DOI: 10.1080/10643389.2020.1753632 |
0.364 |
|
2020 |
Pereira AP, Dong T, Knoshaug EP, Nagle N, Spiller R, Panczak B, Chuck CJ, Pienkos PT. An alternative biorefinery approach to address microalgal seasonality: blending with spent coffee grounds Sustainable Energy and Fuels. 4: 3400-3408. DOI: 10.1039/D0Se00164C |
0.432 |
|
2020 |
Raikova S, Olsson J, Mayers JJ, Nylund GM, Albers E, Chuck CJ. Effect of Geographical Location on the Variation in Products Formed from the Hydrothermal Liquefaction of Ulva intestinalis Energy & Fuels. 34: 368-378. DOI: 10.1021/Acs.Energyfuels.8B02374 |
0.355 |
|
2020 |
Palomino A, Godoy-Silva RD, Raikova S, Chuck CJ. The storage stability of biocrude obtained by the hydrothermal liquefaction of microalgae Renewable Energy. 145: 1720-1729. DOI: 10.1016/J.Renene.2019.07.084 |
0.337 |
|
2020 |
Gopalan K, Raikova S, Smith CR, Bannister CD, Savvoulidi M, Chrysafi S, Johnston N, Chuck CJ. The impact of biodiesel and alternative diesel fuel components on filter blocking through accelerated testing on a novel high pressure common rail non-firing rig Fuel. 282: 118850. DOI: 10.1016/J.Fuel.2020.118850 |
0.349 |
|
2019 |
Hongthong S, Raikova S, Leese HS, Chuck CJ. Co-processing of common plastics with pistachio hulls via hydrothermal liquefaction. Waste Management (New York, N.Y.). 102: 351-361. PMID 31726315 DOI: 10.1016/J.Wasman.2019.11.003 |
0.409 |
|
2019 |
Abeln F, Chuck CJ. Achieving a high-density oleaginous yeast culture: comparison of four processing strategies using Metschnikowia pulcherrima. Biotechnology and Bioengineering. PMID 31429929 DOI: 10.1002/Bit.27141 |
0.385 |
|
2019 |
Landels A, Beacham TA, Evans CT, Carnovale G, Raikova S, Cole IS, Goddard P, Chuck C, Allen MJ. Improving electrocoagulation floatation for harvesting microalgae. Algal Research. 39: 101446. PMID 31058047 DOI: 10.1016/J.Algal.2019.101446 |
0.314 |
|
2019 |
Pereira AP, Woodman T, Brahmbhatt P, Chuck C. The Optimized Production of 5-(Hydroxymethyl)furfural and Related Products from Spent Coffee Grounds Applied Sciences. 9: 3369. DOI: 10.3390/App9163369 |
0.311 |
|
2019 |
Piccini M, Raikova S, Allen MJ, Chuck CJ. A synergistic use of microalgae and macroalgae for heavy metal bioremediation and bioenergy production through hydrothermal liquefaction Sustainable Energy and Fuels. 3: 292-301. DOI: 10.1039/C8Se00408K |
0.317 |
|
2019 |
Remón J, Li T, Chuck CJ, Matharu AS, Clark JH. Toward Renewable-Based, Food-Applicable Prebiotics from Biomass: A One-Step, Additive-Free, Microwave-Assisted Hydrothermal Process for the Production of High Purity Xylo-oligosaccharides from Beech Wood Hemicellulose Acs Sustainable Chemistry & Engineering. 7: 16160-16172. DOI: 10.1021/Acssuschemeng.9B03096 |
0.335 |
|
2019 |
Raikova S, Knowles TDJ, Allen MJ, Chuck CJ. Co-liquefaction of Macroalgae with Common Marine Plastic Pollutants Acs Sustainable Chemistry & Engineering. 7: 6769-6781. DOI: 10.1021/Acssuschemeng.8B06031 |
0.421 |
|
2019 |
Parsons S, Allen MJ, Abeln F, McManus M, Chuck CJ. Sustainability and life cycle assessment (LCA) of macroalgae-derived single cell oils Journal of Cleaner Production. 232: 1272-1281. DOI: 10.1016/J.Jclepro.2019.05.315 |
0.445 |
|
2019 |
Massaya J, Pereira AP, Mills-Lamptey B, Benjamin J, Chuck CJ. Conceptualization of a spent coffee grounds biorefinery: A review of existing valorisation approaches Food and Bioproducts Processing. 118: 149-166. DOI: 10.1016/J.Fbp.2019.08.010 |
0.431 |
|
2019 |
Abeln F, Fan J, Budarin VL, Briers H, Parsons S, Allen MJ, Henk DA, Clark J, Chuck CJ. Lipid production through the single-step microwave hydrolysis of macroalgae using the oleaginous yeast Metschnikowia pulcherrima Algal Research. 38: 101411. DOI: 10.1016/J.Algal.2019.101411 |
0.405 |
|
2019 |
Abeln F, Chuck CJ. The role of temperature, pH and nutrition in process development of the unique oleaginous yeast Metschnikowia pulcherrima Journal of Chemical Technology & Biotechnology. 95: 1163-1172. DOI: 10.1002/Jctb.6301 |
0.37 |
|
2019 |
Raikova S, Piccini M, Surman MK, Allen MJ, Chuck CJ. Making light work of heavy metal contamination: the potential for coupling bioremediation with bioenergy production Journal of Chemical Technology & Biotechnology. 94: 3064-3072. DOI: 10.1002/Jctb.6133 |
0.362 |
|
2019 |
Parsons S, Abeln F, McManus MC, Chuck CJ. Techno‐economic analysis (TEA) of microbial oil production from waste resources as part of a biorefinery concept: assessment at multiple scales under uncertainty Journal of Chemical Technology & Biotechnology. 94: 701-711. DOI: 10.1002/Jctb.5811 |
0.385 |
|
2019 |
Hicks RH, Chuck CJ, Scott RJ, Leak DJ, Henk DA. Comparison of Nile Red and Cell Size Analysis for High‐Throughput Lipid Estimation Within Oleaginous Yeast European Journal of Lipid Science and Technology. 121: 1800355. DOI: 10.1002/Ejlt.201800355 |
0.309 |
|
2019 |
Raikova S, Allen MJ, Chuck CJ. Hydrothermal liquefaction of macroalgae for the production of renewable biofuels Biofuels, Bioproducts and Biorefining. 13: 1483-1504. DOI: 10.1002/Bbb.2047 |
0.351 |
|
2018 |
Chantasuban T, Santomauro F, Gore-Lloyd D, Parsons S, Henk D, Scott RJ, Chuck C. Elevated production of the aromatic fragrance molecule, 2-phenylethanol, using Metschnikowia pulcherrima through both de novo and ex novo conversion in batch and continuous modes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire : 1986). 93: 2118-2130. PMID 30069076 DOI: 10.1002/Jctb.5597 |
0.331 |
|
2018 |
Wagner JL, Jones E, Sartbaeva A, Davis SA, Torrente-Murciano L, Chuck CJ, Ting VP. Zeolite Y supported nickel phosphide catalysts for the hydrodenitrogenation of quinoline as a proxy for crude bio-oils from hydrothermal liquefaction of microalgae. Dalton Transactions (Cambridge, England : 2003). PMID 29292457 DOI: 10.1039/C7Dt03318D |
0.361 |
|
2018 |
Remón J, Santomauro F, Chuck CJ, Matharu AS, Clark JH. Production of fermentable species by microwave-assisted hydrothermal treatment of biomass carbohydrates: reactivity and fermentability assessments Green Chemistry. 20: 4507-4520. DOI: 10.1039/C8Gc02182A |
0.368 |
|
2018 |
Fan J, Santomauro F, Budarin VL, Whiffin F, Abeln F, Chantasuban T, Gore-Lloyd D, Henk D, Scott RJ, Clark J, Chuck CJ. The additive free microwave hydrolysis of lignocellulosic biomass for fermentation to high value products Journal of Cleaner Production. 198: 776-784. DOI: 10.1016/J.Jclepro.2018.07.088 |
0.394 |
|
2018 |
Parsons S, Chuck CJ, McManus MC. Microbial lipids: Progress in life cycle assessment (LCA) and future outlook of heterotrophic algae and yeast-derived oils Journal of Cleaner Production. 172: 661-672. DOI: 10.1016/J.Jclepro.2017.10.014 |
0.419 |
|
2018 |
Santomauro F, Fan J, Budarin VL, Parsons S, Clark J, Miller T, Chuck CJ. Microbial oil produced from the fermentation of microwave-depolymerised rapeseed meal Bioresource Technology Reports. 4: 159-165. DOI: 10.1016/J.Biteb.2018.10.008 |
0.414 |
|
2018 |
Wagner JL, Perin J, Coelho RS, Ting VP, Chuck CJ, Franco TT. Hydrothermal Conversion of Lipid-Extracted Microalgae Hydrolysate in the Presence of Isopropanol and Steel Furnace Residues Waste and Biomass Valorization. 9: 1867-1879. DOI: 10.1007/S12649-017-9944-7 |
0.372 |
|
2017 |
Zhou L, Santomauro F, Fan J, Macquarrie D, Clark J, Chuck CJ, Budarin V. Fast microwave-assisted acidolysis: a new biorefinery approach for the zero-waste utilisation of lignocellulosic biomass to produce high quality lignin and fermentable saccharides. Faraday Discussions. PMID 28665433 DOI: 10.1039/C7Fd00102A |
0.427 |
|
2017 |
Coma M, Martinez-Hernandez E, Abeln F, Raikova S, Donnelly J, Arnot TC, Allen MJ, Hong DD, Chuck CJ. Organic waste as a sustainable feedstock for platform chemicals. Faraday Discussions. PMID 28654113 DOI: 10.1039/C7Fd00070G |
0.418 |
|
2017 |
Wagner JL, Le CD, Ting VP, Chuck CJ. Design and operation of an inexpensive, laboratory-scale, continuous hydrothermal liquefaction reactor for the conversion of microalgae produced during wastewater treatment Fuel Processing Technology. 165: 102-111. DOI: 10.1016/J.Fuproc.2017.05.006 |
0.315 |
|
2017 |
Raikova S, Le CD, Beacham TA, Jenkins R, Allen M, Chuck C. Towards a marine biorefinery through the hydrothermal liquefaction of macroalgae native to the United Kingdom Biomass & Bioenergy. 107: 244-253. DOI: 10.1016/J.Biombioe.2017.10.010 |
0.444 |
|
2017 |
Jenkins RW, Ellis EH, Lewis EJ, Paterson M, Le CD, Ting VP, Chuck CJ. Production of Biodiesel from Vietnamese Waste Coffee Beans: Biofuel Yield, Saturation and Stability are All Elevated Compared with Conventional Coffee Biodiesel Waste and Biomass Valorization. 8: 1237-1245. DOI: 10.1007/S12649-016-9715-X |
0.418 |
|
2016 |
Jenkins RW, Moore CM, Semelsberger TA, Chuck CJ, Gordon JC, Sutton AD. The Effect of Functional Groups in Bio-Derived Fuel Candidates. Chemsuschem. PMID 27099975 DOI: 10.1002/Cssc.201600159 |
0.617 |
|
2016 |
Wagner J, Bransgrove R, Beacham TA, Allen MJ, Meixner K, Drosg B, Ting VP, Chuck CJ. Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria. Bioresource Technology. 207: 166-174. PMID 26881334 DOI: 10.1016/J.Biortech.2016.01.114 |
0.416 |
|
2016 |
Repetto SL, Patel R, Johnson T, Costello JF, Lam JK, Chuck CJ. Dual Action Additives for Jet A-1: Fuel Dehydrating Icing Inhibitors Energy & Fuels. 30: 9080-9088. DOI: 10.1021/Acs.Energyfuels.6B01727 |
0.327 |
|
2016 |
Donnelly J, Horton R, Gopalan K, Bannister CD, Chuck CJ. Branched Ketone Biofuels as Blending Agents for Jet-A1 Aviation Kerosene Energy and Fuels. 30: 294-301. DOI: 10.1021/Acs.Energyfuels.5B01629 |
0.372 |
|
2016 |
Raikova S, Smith-Baedorf H, Bransgrove R, Barlow O, Santomauro F, Wagner JL, Allen MJ, Bryan CG, Sapsford D, Chuck CJ. Assessing hydrothermal liquefaction for the production of bio-oil and enhanced metal recovery from microalgae cultivated on acid mine drainage Fuel Processing Technology. 142: 219-227. DOI: 10.1016/J.Fuproc.2015.10.017 |
0.361 |
|
2016 |
Jenkins RW, Moore CM, Semelsberger TA, Chuck CJ, Gordon JC, Sutton AD. Back Cover: The Effect of Functional Groups in Bio-Derived Fuel Candidates (ChemSusChem 9/2016) Chemsuschem. 9: 1051-1051. DOI: 10.1002/Cssc.201600552 |
0.597 |
|
2016 |
Whiffin F, Santomauro F, Chuck CJ. Toward a microbial palm oil substitute: oleaginous yeasts cultured on lignocellulose Biofuels, Bioproducts and Biorefining. 10: 316-334. DOI: 10.1002/Bbb.1641 |
0.426 |
|
2015 |
Donnelly J, Müller CR, Wiermans L, Chuck CJ, Domínguez De María P. Upgrading biogenic furans: Blended C10-C12 platform chemicals via lyase-catalyzed carboligations and formation of novel C12 - Choline chloride-based deep-eutectic-solvents Green Chemistry. 17: 2714-2718. DOI: 10.1039/C5Gc00342C |
0.316 |
|
2015 |
Jenkins RW, Sargeant LA, Whiffin FM, Santomauro F, Kaloudis D, Mozzanega P, Bannister CD, Baena S, Chuck CJ. Cross-Metathesis of Microbial Oils for the Production of Advanced Biofuels and Chemicals Acs Sustainable Chemistry and Engineering. 3: 1526-1535. DOI: 10.1021/Acssuschemeng.5B00228 |
0.44 |
|
2015 |
Sargeant LA, Mardell M, Saad-Allah KM, Hussein AH, Whiffin F, Santomauro F, Chuck CJ. Production of lipid from depolymerised lignocellulose using the biocontrol yeast, Rhodotorula minuta: The fatty acid profile remains stable irrespective of environmental conditions European Journal of Lipid Science and Technology. DOI: 10.1002/Ejlt.201500143 |
0.313 |
|
2014 |
Santamauro F, Whiffin FM, Scott RJ, Chuck CJ. Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnology For Biofuels. 7: 34. PMID 24593824 DOI: 10.1186/1754-6834-7-34 |
0.42 |
|
2014 |
Jenkins RW, Stageman NE, Fortune CM, Chuck CJ. Effect of the type of bean, processing, and geographical location on the biodiesel produced from waste coffee grounds Energy and Fuels. 28: 1166-1174. DOI: 10.1021/Ef4022976 |
0.417 |
|
2014 |
Wagner JL, Ting VP, Chuck CJ. Catalytic cracking of sterol-rich yeast lipid Fuel. 130: 315-323. DOI: 10.1016/J.Fuel.2014.04.048 |
0.378 |
|
2014 |
Chuck CJ, Lou-Hing D, Dean R, Sargeant LA, Scott RJ, Jenkins RW. Simultaneous microwave extraction and synthesis of fatty acid methyl ester from the oleaginous yeast Rhodotorula glutinis Energy. 69: 446-454. DOI: 10.1016/J.Energy.2014.03.036 |
0.362 |
|
2014 |
Chuck CJ, Donnelly J. The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene Applied Energy. 118: 83-91. DOI: 10.1016/J.Apenergy.2013.12.019 |
0.398 |
|
2013 |
Chuck CJ, Parker HJ, Jenkins RW, Donnelly J. Renewable biofuel additives from the ozonolysis of lignin. Bioresource Technology. 143: 549-54. PMID 23831897 DOI: 10.1016/J.Biortech.2013.06.048 |
0.432 |
|
2013 |
Smith-Bädorf HD, Chuck CJ, Mokebo KR, Macdonald H, Davidson MG, Scott RJ. Bioprospecting the thermal waters of the Roman baths: isolation of oleaginous species and analysis of the FAME profile for biodiesel production. Amb Express. 3: 9. PMID 23369619 DOI: 10.1186/2191-0855-3-9 |
0.35 |
|
2013 |
Harkins M, Lou-Hing D, Sargeant LA, Chuck CJ. Effect of Bacterial Invasion on the Growth and Lipid Production of the Oleaginous Yeast Rhodotorula glutinis Journal of Technology Innovations in Renewable Energy. 2: 222-230. DOI: 10.6000/1929-6002.2013.02.03.3 |
0.331 |
|
2013 |
Jenkins RW, Munro M, Nash S, Chuck CJ. Potential renewable oxygenated biofuels for the aviation and road transport sectors Fuel. 103: 593-599. DOI: 10.1016/J.Fuel.2012.08.019 |
0.435 |
|
2012 |
Chuck CJ, Bannister CD, Jenkins RW, Lowe JP, Davidson MG. A comparison of analytical techniques and the products formed during the decomposition of biodiesel under accelerated conditions Fuel. 96: 426-433. DOI: 10.1016/J.Fuel.2012.01.043 |
0.38 |
|
2012 |
Chuck CJ, Jenkins RW, Bannister CD, Han L, Lowe JP. Design and preliminary results of an NMR tube reactor to study the oxidative degradation of fatty acid methyl ester Biomass and Bioenergy. 47: 188-194. DOI: 10.1016/J.Biombioe.2012.09.043 |
0.323 |
|
2010 |
Chuck CJ, Bannister CD, Gary Hawley J, Davidson MG. Spectroscopic sensor techniques applicable to real-time biodiesel determination Fuel. 89: 457-461. DOI: 10.1016/J.Fuel.2009.09.027 |
0.412 |
|
2009 |
Chuck CJ, Bannister CD, Hawley G, Davidson MG, Bruna IL, Paine A. Predictive model to assess the molecular structure of Biodiesel fuel Energy and Fuels. 23: 2290-2294. DOI: 10.1021/Ef801085S |
0.405 |
|
2004 |
Saffarzadeh-Matin S, Chuck CJ, Kerton FM, Rayner CM. Poly(dimethylsiloxane)-derived phosphine and phosphinite ligands: Synthesis, characterization, solubility in supercritical carbon dioxide, and sequestration on silica Organometallics. 23: 5176-5181. DOI: 10.1021/Om0496277 |
0.569 |
|
Show low-probability matches. |