Christina M. Woo, Ph.D. - Publications

Affiliations: 
2016- Harvard University, Cambridge, MA, United States 

29 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Darabedian N, Yang B, Ding R, Cutolo G, Zaro BW, Woo CM, Pratt MR. O-Acetylated Chemical Reporters of Glycosylation Can Display Metabolism-Dependent Background Labeling of Proteins but Are Generally Reliable Tools for the Identification of Glycoproteins. Frontiers in Chemistry. 8: 318. PMID 32411667 DOI: 10.3389/fchem.2020.00318  1
2020 Ramirez DH, Aonbangkhen C, Wu HY, Naftaly JA, Tang S, O'Meara TR, Woo CM. Engineering a Proximity-Directed O-GlcNAc Transferase for Selective Protein O-GlcNAcylation in Cells. Acs Chemical Biology. PMID 32119511 DOI: 10.1021/acschembio.0c00074  1
2019 Flaxman HA, Miyamoto DK, Woo CM. Small Molecule Interactome Mapping by Photo-Affinity Labeling (SIM-PAL) to Identify Binding Sites of Small Molecules on a Proteome-Wide Scale. Current Protocols in Chemical Biology. 11: e75. PMID 31763793 DOI: 10.1002/cpch.75  1
2019 Amako Y, Woo CM. A chiral trick to map protein ligandability. Nature Chemistry. 11: 1080-1082. PMID 31758156 DOI: 10.1038/s41557-019-0380-0  1
2019 Miyamoto DK, Flaxman HA, Wu HY, Gao J, Woo CM. Discovery of a Celecoxib Binding Site on Prostaglandin E Synthase (PTGES) with a Cleavable Chelation-Assisted Biotin Probe. Acs Chemical Biology. PMID 31650837 DOI: 10.1021/acschembio.9b00511  1
2019 Joiner CM, Levine ZG, Aonbangkhen C, Woo CM, Walker S. Aspartate residues far from the active site drive O-GlcNAc transferase substrate selection. Journal of the American Chemical Society. PMID 31373491 DOI: 10.1021/jacs.9b06061  1
2019 Flaxman HA, Chang CF, Wu HY, Nakamoto CH, Woo CM. A binding site hotspot map of the FKBP12-rapamycin-FRB ternary complex by photo-affinity labeling and mass spectrometry-based proteomics. Journal of the American Chemical Society. PMID 31309829 DOI: 10.1021/jacs.9b03764  1
2018 Darabedian N, Gao J, Chuh KN, Woo CM, Pratt MR. The metabolic chemical reporter 6-azido-6-deoxy-glucose further reveals the substrate promiscuity of O-GlcNAc transferase and catalyzes the discovery of intracellular protein modification by O-glucose. Journal of the American Chemical Society. PMID 29771506 DOI: 10.1021/jacs.7b13488  1
2018 Gao J, Mfuh A, Amako Y, Woo CM. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs. Journal of the American Chemical Society. PMID 29543447 DOI: 10.1021/jacs.7b11639  1
2018 Woo CM, Lund PJ, Huang AC, Davis MM, Bertozzi CR, Pitteri S. Mapping and quantification of over 2,000 O-linked glycopeptides in activated human T cells with isotope-targeted glycoproteomics (IsoTaG). Molecular & Cellular Proteomics : McP. PMID 29351928 DOI: 10.1074/mcp.RA117.000261  1
2017 Flaxman HA, Woo CM. Mapping the small molecule interactome by mass spectrometry. Biochemistry. PMID 29083874 DOI: 10.1021/acs.biochem.7b01038  1
2017 Woo CM, Felix A, Byrd WE, Zuegel DK, Ishihara M, Azadi P, Iavarone AT, Pitteri SJ, Bertozzi CR. Development of IsoTaG, a Chemical Glycoproteomics Technique for Profiling Intact N- and O-Glycopeptides from Whole Cell Proteomes. Journal of Proteome Research. PMID 28244757 DOI: 10.1021/acs.jproteome.6b01053  1
2016 Woo CM, Felix A, Zhang L, Elias JE, Bertozzi CR. Isotope-targeted glycoproteomics (IsoTaG) analysis of sialylated N- and O-glycopeptides on an Orbitrap Fusion Tribrid using azido and alkynyl sugars. Analytical and Bioanalytical Chemistry. PMID 27695962 DOI: 10.1007/s00216-016-9934-9  1
2016 Sheta R, Roux-Dalvai F, Woo CM, Fournier F, Bourassa S, Bertozzi CR, Droit A, Bachvarov D. Proteomic dataset for altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells. Data in Brief. 8: 342-9. PMID 27331112 DOI: 10.1016/j.dib.2016.05.060  1
2016 Sheta R, Woo CM, Roux-Dalvai F, Fournier F, Bourassa S, Droit A, Bertozzi CR, Bachvarov D. A metabolic labeling approach for glycoproteomic analysis reveals altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells. Journal of Proteomics. PMID 27095597 DOI: 10.1016/j.jprot.2016.04.009  1
2016 Woo CM, Bertozzi CR. Isotope Targeted Glycoproteomics (IsoTaG) to Characterize Intact, Metabolically Labeled Glycopeptides from Complex Proteomes. Current Protocols in Chemical Biology. 8: 59-82. PMID 26995354 DOI: 10.1002/9780470559277.ch150185  1
2016 Woo CM, Li Z, Paulson EK, Herzon SB. Structural basis for DNA cleavage by the potent antiproliferative agent (-)-lomaiviticin A. Proceedings of the National Academy of Sciences of the United States of America. PMID 26929332 DOI: 10.1073/pnas.1519846113  1
2015 Woo CM, Iavarone AT, Spiciarich DR, Palaniappan KK, Bertozzi CR. Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nature Methods. 12: 561-7. PMID 25894945 DOI: 10.1038/nmeth.3366  1
2014 Woo CM, Ranjan N, Arya DP, Herzon SB. Analysis of diazofluorene DNA binding and damaging activity: DNA cleavage by a synthetic monomeric diazofluorene. Angewandte Chemie (International Ed. in English). 53: 9325-8. PMID 25044348 DOI: 10.1002/anie.201404137  1
2014 Colis LC, Woo CM, Hegan DC, Li Z, Glazer PM, Herzon SB. The cytotoxicity of (-)-lomaiviticin A arises from induction of double-strand breaks in DNA. Nature Chemistry. 6: 504-10. PMID 24848236 DOI: 10.1038/nchem.1944  1
2013 Woo CM, Gholap SL, Herzon SB. Insights into lomaiviticin biosynthesis. Isolation and structure elucidation of (-)-homoseongomycin. Journal of Natural Products. 76: 1238-41. PMID 23803003 DOI: 10.1021/np400355h  1
2012 Woo CM, Gholap SL, Lu L, Kaneko M, Li Z, Ravikumar PC, Herzon SB. Development of enantioselective synthetic routes to (-)-kinamycin F and (-)-lomaiviticin aglycon. Journal of the American Chemical Society. 134: 17262-73. PMID 23030272 DOI: 10.1021/ja307497h  1
2012 Woo CM, Beizer NE, Janso JE, Herzon SB. Isolation of lomaiviticins C-E, transformation of lomaiviticin C to lomaiviticin A, complete structure elucidation of lomaiviticin A, and structure-activity analyses. Journal of the American Chemical Society. 134: 15285-8. PMID 22963534 DOI: 10.1021/ja3074984  1
2012 Herzon SB, Woo CM. The diazofluorene antitumor antibiotics: structural elucidation, biosynthetic, synthetic, and chemical biological studies. Natural Product Reports. 29: 87-118. PMID 22037715 DOI: 10.1039/c1np00052g  1
2012 Mulcahy SP, Woo CM, Ding W, Ellestad GA, Herzon SB. Characterization of a reductively-activated elimination pathway relevant to the biological chemistry of the kinamycins and lomaiviticins Chemical Science. 3: 1070-1074. DOI: 10.1039/c2sc00854h  1
2011 Devji T, Reddy C, Woo C, Awale S, Kadota S, Carrico-Moniz D. Pancreatic anticancer activity of a novel geranylgeranylated coumarin derivative. Bioorganic & Medicinal Chemistry Letters. 21: 5770-3. PMID 21880488 DOI: 10.1016/j.bmcl.2011.08.005  1
2011 Herzon SB, Lu L, Woo CM, Gholap SL. 11-Step enantioselective synthesis of (-)-lomaiviticin aglycon. Journal of the American Chemical Society. 133: 7260-3. PMID 21280607 DOI: 10.1021/ja200034b  1
2010 Woo CM, Lu L, Gholap SL, Smith DR, Herzon SB. Development of a convergent entry to the diazofluorene antitumor antibiotics: enantioselective synthesis of kinamycin F. Journal of the American Chemical Society. 132: 2540-1. PMID 20141138 DOI: 10.1021/ja910769j  1
2009 Gholap SL, Woo CM, Ravikumar PC, Herzon SB. Synthesis of the fully glycosylated cyclohexenone core of lomaiviticin A. Organic Letters. 11: 4322-5. PMID 19719089 DOI: 10.1021/ol901710b  1
Show low-probability matches.