Chris Sander, PhD

Affiliations: 
1986-1997 Biocomputing EMBL Heidelberg 
 1995-1998 Research European Bioinformatics Institute (EBI), UK 
 2002-2015 Computational Biology Center Memorial Sloan Kettering Cancer Center, Rockville Centre, NY, United States 
 2016- Cell Biology Harvard Medical School 
Area:
computational biology, structural biology, cancer biology, evolutionary biology
Website:
http://sanderlab.org
Google:
"Chris Sander"
Bio:

http://www.mskcc.org/research/lab/chris-sander
http://www.iscb.org/iscb-awards/1133

Cross-listing: Chemistry Tree

BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Li X, Dowling EK, Yan G, et al. (2022) Precision combination therapies based on recurrent oncogenic co-alterations. Cancer Discovery
Ostaszewski M, Niarakis A, Mazein A, et al. (2021) COVID-19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms. Molecular Systems Biology. 17: e10851
Luna A, Siper MC, Korkut A, et al. (2021) Analyzing causal relationships in proteomic profiles using CausalPath. Star Protocols. 2: 100955
Wong JV, Franz M, Siper MC, et al. (2021) Author-sourced capture of pathway knowledge in computable form using Biofactoid. Elife. 10
Gillespie M, Jassal B, Stephan R, et al. (2021) The reactome pathway knowledgebase 2022. Nucleic Acids Research
Ostaszewski M, Niarakis A, Mazein A, et al. (2021) COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms. Molecular Systems Biology. 17: e10387
Babur Ö, Luna A, Korkut A, et al. (2021) Causal interactions from proteomic profiles: Molecular data meet pathway knowledge. Patterns (New York, N.Y.). 2: 100257
Bernhofer M, Dallago C, Karl T, et al. (2021) PredictProtein - Predicting Protein Structure and Function for 29 Years. Nucleic Acids Research
Shin JE, Riesselman AJ, Kollasch AW, et al. (2021) Protein design and variant prediction using autoregressive generative models. Nature Communications. 12: 2403
Yuan B, Shen C, Luna A, et al. (2020) CellBox: Interpretable Machine Learning for Perturbation Biology with Application to the Design of Cancer Combination Therapy. Cell Systems
See more...