Robbin Bouwmeester

Ghent University, Ghent, Vlaanderen, Belgium 
"Robbin Bouwmeester"
BETA: Related publications


You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Declercq A, Demeulemeester N, Gabriels R, et al. (2024) Bioinformatics Pipeline for Processing Single-Cell Data. Methods in Molecular Biology (Clifton, N.J.). 2817: 221-239
Staes A, Mendes Maia T, Dufour S, et al. (2024) Benefit of In Silico Predicted Spectral Libraries in Data-Independent Acquisition Data Analysis Workflows. Journal of Proteome Research
Siraj A, Bouwmeester R, Declercq A, et al. (2024) Intensity and retention time prediction improves the rescoring of protein-nucleic acid cross-links. Proteomics. 24: e2300144
Bouwmeester R, Richardson K, Denny R, et al. (2024) Predicting ion mobility collision cross sections and assessing prediction variation by combining conventional and data driven modeling. Talanta. 274: 125970
Buur LM, Declercq A, Strobl M, et al. (2024) MSRescore 3.0 Is a Modular, Flexible, and User-Friendly Platform to Boost Peptide Identifications, as Showcased with MS Amanda 3.0. Journal of Proteome Research
Koutrouli M, Nastou K, Líndez PP, et al. (2024) FAVA: High-quality functional association networks inferred from scRNA-seq and proteomics data. Bioinformatics (Oxford, England)
Sakarika M, Kerckhof FM, Van Peteghem L, et al. (2023) The nutritional composition and cell size of microbial biomass for food applications are defined by the growth conditions. Microbial Cell Factories. 22: 254
Declercq A, Bouwmeester R, Chiva C, et al. (2023) Updated MS²PIP web server supports cutting-edge proteomics applications. Nucleic Acids Research
Claeys T, Menu M, Bouwmeester R, et al. (2023) Machine Learning on Large-Scale Proteomics Data Identifies Tissue and Cell-Type Specific Proteins. Journal of Proteome Research
Boone M, Ramasamy P, Zuallaert J, et al. (2023) Author Correction: Massively parallel interrogation of protein fragment secretability using SECRiFY reveals features influencing secretory system transit. Nature Communications. 14: 1072
See more...