John J. Portman, Ph.D. - Publications

Affiliations: 
University of Illinois, Urbana-Champaign, Urbana-Champaign, IL 
Area:
protein folding, regulatory networks, glasses, many-body phenomena

25 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2017 Gavazzi D, Portman JJ. The Folding Mechanism and Kinetics of the Domains of α-Spectrin: Results from a Variational Model Biophysical Journal. 112: 497a-498a. DOI: 10.1016/J.Bpj.2016.11.2691  0.37
2017 Ruzmetov TA, Portman JJ. Exploring the Role of Flexibility in Binding Kinetics and Affinity of pKID-Kix through Coarse Grained Simulations Biophysical Journal. 112: 208a. DOI: 10.1016/J.Bpj.2016.11.1147  0.491
2016 Nandigrami P, Portman JJ. Comparing allosteric transitions in the domains of calmodulin through coarse-grained simulations. The Journal of Chemical Physics. 144: 105102. PMID 26979706 DOI: 10.1063/1.4943130  0.46
2016 Nandigrami P, Portman JJ. Coarse-grained molecular simulations of allosteric cooperativity. The Journal of Chemical Physics. 144: 105101. PMID 26979705 DOI: 10.1063/1.4943043  0.489
2016 Nandigrami P, Portman JJ. Calculating Multi-Body Cooperativity Parameters for Calcium Binding to Calmodulin through Coarse-Grained Simulations Biophysical Journal. 110: 55a. DOI: 10.1016/J.Bpj.2015.11.362  0.477
2014 Ruzmetov T, Portman JJ. Influence of Desolvation Barriers in Coupled Folding and Binding Kinetics of pKID-KIX Biophysical Journal. 106: 482a. DOI: 10.1016/J.Bpj.2013.11.2724  0.494
2013 Tripathi S, Portman JJ. Allostery and folding of the N-terminal receiver domain of protein NtrC. The Journal of Physical Chemistry. B. 117: 13182-93. PMID 23961720 DOI: 10.1021/Jp403181P  0.427
2013 Nandigrami P, Portman JJ. Exploring Kinetic Scenarios for Allosteric Transitions of Calmodulin through Coarse-Grained Simulations Biophysical Journal. 104: 58a. DOI: 10.1016/J.Bpj.2012.11.358  0.464
2012 Ray S, Qureshi MH, Malcolm D, Celik U, Portman JJ, Balci H. What Structural Elements make a G-Quadruplex Physiologically Viable? Biophysical Journal. 102: 483a. DOI: 10.1016/J.Bpj.2011.11.2646  0.448
2012 Nandigrami P, Portman JJ. Conformational Flexibility and the Mechanism of Allosteric Transitions in Calmodulin Biophysical Journal. 102: 449a. DOI: 10.1016/J.Bpj.2011.11.2462  0.514
2011 Tripathi S, Portman JJ. Conformational flexibility and the mechanisms of allosteric transitions in topologically similar proteins. The Journal of Chemical Physics. 135: 075104. PMID 21861587 DOI: 10.1063/1.3625636  0.443
2011 Tripathi S, Portman JJ. Allostery and Folding Mechanisms of the N-Terminal Receiver Domain of Protein NTRC Biophysical Journal. 100: 18a. DOI: 10.1016/J.Bpj.2010.12.308  0.47
2010 Portman JJ. Cooperativity and protein folding rates. Current Opinion in Structural Biology. 20: 11-5. PMID 20093004 DOI: 10.1016/J.Sbi.2009.12.013  0.522
2009 Tripathi S, Portman JJ. Inherent flexibility determines the transition mechanisms of the EF-hands of calmodulin. Proceedings of the National Academy of Sciences of the United States of America. 106: 2104-9. PMID 19190183 DOI: 10.1073/Pnas.0806872106  0.466
2008 Qi X, Portman JJ. Capillarity-like growth of protein folding nuclei. Proceedings of the National Academy of Sciences of the United States of America. 105: 11164-9. PMID 18678894 DOI: 10.1073/Pnas.0711527105  0.448
2008 Tripathi S, Portman JJ. Inherent flexibility and protein function: The open/closed conformational transition in the N-terminal domain of calmodulin. The Journal of Chemical Physics. 128: 205104. PMID 18513047 DOI: 10.1063/1.2928634  0.514
2008 Shen T, Zong C, Portman JJ, Wolynes PG. Variationally determined free energy profiles for structural models of proteins: characteristic temperatures for folding and trapping. The Journal of Physical Chemistry. B. 112: 6074-82. PMID 18376882 DOI: 10.1021/Jp076280N  0.628
2007 Qi X, Portman JJ. Excluded volume, local structural cooperativity, and the polymer physics of protein folding rates. Proceedings of the National Academy of Sciences of the United States of America. 104: 10841-6. PMID 17569785 DOI: 10.1073/Pnas.0609321104  0.511
2003 Portman JJ. Non-Gaussian dynamics from a simulation of a short peptide: Loop closure rates and effective diffusion coefficients Journal of Chemical Physics. 118: 2381-2391. DOI: 10.1063/1.1532728  0.365
2001 Portman JJ, Takada S, Wolynes PG. Microscopic theory of protein folding rates. II. Local reaction coordinates and chain dynamics Journal of Chemical Physics. 114: 5082-5096. DOI: 10.1063/1.1334663  0.586
2001 Portman JJ, Takada S, Wolynes PG. Microscopic theory of protein folding rates. I. Fine structure of the free energy profile and folding routes from a variational approach Journal of Chemical Physics. 114: 5069-5081. DOI: 10.1063/1.1334662  0.606
2000 Shoemaker BA, Portman JJ, Wolynes PG. Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proceedings of the National Academy of Sciences of the United States of America. 97: 8868-73. PMID 10908673 DOI: 10.1073/Pnas.160259697  0.639
1999 Portman JJ, Wolynes PG. Complementary variational approximations for intermittency and reaction dynamics in fluctuating environments Journal of Physical Chemistry A. 103: 10602-10610. DOI: 10.1021/Jp992334K  0.459
1998 Portman JJ, Takada S, Wolynes PG. Variational theory for site resolved protein folding free energy surfaces Physical Review Letters. 81: 5237-5240. DOI: 10.1103/Physrevlett.81.5237  0.588
1997 Takada S, Portman JJ, Wolynes PG. An elementary mode coupling theory of random heteropolymer dynamics. Proceedings of the National Academy of Sciences of the United States of America. 94: 2318-21. PMID 9122192 DOI: 10.1073/Pnas.94.6.2318  0.469
Show low-probability matches.