Year |
Citation |
Score |
2020 |
Manda P. Data mining powered by the gene ontology Wires Data Mining and Knowledge Discovery. 10. DOI: 10.1002/Widm.1359 |
0.302 |
|
2019 |
Manda P, Hahn A, Beekman K, Vision TJ. Avoiding "conflicts of interest": a computational approach to scheduling parallel conference tracks and its human evaluation. Peerj. Computer Science. 5: e234. PMID 33816887 DOI: 10.7717/peerj-cs.234 |
0.6 |
|
2019 |
Manda P, Hahn A, Beekman K, Vision TJ. Avoiding “conflicts of interest”: a computational approach to scheduling parallel conference tracks and its human evaluation Peerj Computer Science. 5: e234. DOI: 10.7717/Peerj-Cs.234 |
0.618 |
|
2018 |
Dahdul W, Manda P, Cui H, Balhoff JP, Dececchi TA, Ibrahim N, Lapp H, Vision T, Mabee PM. Annotation of phenotypes using ontologies: a gold standard for the training and evaluation of natural language processing systems. Database : the Journal of Biological Databases and Curation. 2018. PMID 30576485 DOI: 10.1093/Database/Bay110 |
0.699 |
|
2017 |
Dahdul W, Manda P, Cui H, Balhoff J, Dececchi TA, Ibrahim N, Lapp H, Mabee P, Vision T. Gold standard evaluation of machine and human generated annotations of biodiverse phenotypes F1000research. 6. DOI: 10.7490/F1000Research.1113805.1 |
0.673 |
|
2016 |
Manda P, Mungall CJ, Balhoff JP, Lapp H, Vision TJ. INVESTIGATING THE IMPORTANCE OF ANATOMICAL HOMOLOGY FOR CROSS-SPECIES PHENOTYPE COMPARISONS USING SEMANTIC SIMILARITY. Pacific Symposium On Biocomputing. Pacific Symposium On Biocomputing. 21: 132-43. PMID 26776180 |
0.702 |
|
2015 |
Oellrich A, Collier N, Groza T, Rebholz-Schuhmann D, Shah N, Bodenreider O, Boland MR, Georgiev I, Liu H, Livingston K, Luna A, Mallon AM, Manda P, Robinson PN, Rustici G, et al. The digital revolution in phenotyping. Briefings in Bioinformatics. PMID 26420780 DOI: 10.1093/Bib/Bbv083 |
0.342 |
|
2015 |
Manda P, Balhoff JP, Lapp H, Mabee P, Vision TJ. Using the phenoscape knowledgebase to relate genetic perturbations to phenotypic evolution. Genesis (New York, N.Y. : 2000). 53: 561-71. PMID 26220875 DOI: 10.1002/Dvg.22878 |
0.694 |
|
2015 |
Balhoff J, Manda P, Lapp H, Mabee P, Vision T. Connecting genes with evolutionary knowledge using semantic similarity and ancestral profiles of variation F1000research. 4. DOI: 10.7490/F1000Research.1000199.1 |
0.679 |
|
2013 |
Manda P, McCarthy F, Bridges SM. Interestingness measures and strategies for mining multi-ontology multi-level association rules from gene ontology annotations for the discovery of new GO relationships. Journal of Biomedical Informatics. 46: 849-56. PMID 23850840 DOI: 10.1016/J.Jbi.2013.06.012 |
0.386 |
|
2012 |
Manda P, Ozkan S, Wang H, McCarthy F, Bridges SM. Cross-Ontology multi-level association rule mining in the Gene Ontology. Plos One. 7: e47411. PMID 23071802 DOI: 10.1371/Journal.Pone.0047411 |
0.396 |
|
2011 |
McCarthy FM, Gresham CR, Buza TJ, Chouvarine P, Pillai LR, Kumar R, Ozkan S, Wang H, Manda P, Arick T, Bridges SM, Burgess SC. AgBase: supporting functional modeling in agricultural organisms. Nucleic Acids Research. 39: D497-506. PMID 21075795 DOI: 10.1093/Nar/Gkq1115 |
0.41 |
|
2010 |
Manda P, Freeman MG, Bridges SM, Jankun-Kelly TJ, Nanduri B, McCarthy FM, Burgess SC. GOModeler--a tool for hypothesis-testing of functional genomics datasets. Bmc Bioinformatics. 11: S29. PMID 20946613 DOI: 10.1186/1471-2105-11-S6-S29 |
0.385 |
|
2009 |
van den Berg BH, Thanthiriwatte C, Manda P, Bridges SM. Comparing gene annotation enrichment tools for functional modeling of agricultural microarray data. Bmc Bioinformatics. 10: S9. PMID 19811693 DOI: 10.1186/1471-2105-10-S11-S9 |
0.434 |
|
Show low-probability matches. |