Year |
Citation |
Score |
2020 |
Xue K, Prezioso SM, Christendat D. QuiC2 represents a functionally distinct class of dehydroshikimate dehydratases identified in Listeria species including Listeria monocytogenes. Environmental Microbiology. PMID 32190965 DOI: 10.1111/1462-2920.14987 |
0.375 |
|
2019 |
Shabalin IG, Gritsunov A, Hou J, Lipowska J, Miks CD, Cooper DR, Minor W, Christendat D. Structural and biochemical analysis of Bacillus anthracis prephenate dehydrogenase reveals an unusual mode of inhibition by tyrosine via the ACT domain. The Febs Journal. PMID 31750992 DOI: 10.1111/Febs.15150 |
0.476 |
|
2019 |
Shabalin IG, Gritsunov A, Hou J, Lipowska J, Miks CD, Cooper DR, Minor W, Christendat D. ACT domain of Bacillus anthracis prephenate dehydrogenase acts as tyrosine sensor and inhibits the enzyme via a mechanical switch Acta Crystallographica Section A. 75. DOI: 10.1107/S0108767319096685 |
0.334 |
|
2018 |
Gritsunov A, Peek J, Diaz Caballero J, Guttman D, Christendat D. Structural and biochemical approaches uncover multiple evolutionary trajectories of plant quinate dehydrogenases. The Plant Journal : For Cell and Molecular Biology. PMID 29890023 DOI: 10.2210/Pdb6Bmq/Pdb |
0.625 |
|
2018 |
Prezioso SM, Xue K, Leung N, Gray-Owen SD, Christendat D. Shikimate induced transcriptional activation of protocatechuate biosynthesis genes by QuiR, a LysR Type Transcriptional Regulator, in Listeria monocytogenes. Journal of Molecular Biology. PMID 29530613 DOI: 10.1016/J.Jmb.2018.03.003 |
0.328 |
|
2016 |
Peek J, Roman J, Moran GR, Christendat D. Structurally diverse dehydroshikimate dehydratase variants participate in microbial quinate catabolism. Molecular Microbiology. PMID 27706847 DOI: 10.1111/Mmi.13542 |
0.657 |
|
2015 |
Peek J, Christendat D. The shikimate dehydrogenase family: functional diversity within a conserved structural and mechanistic framework. Archives of Biochemistry and Biophysics. 566: 85-99. PMID 25524738 DOI: 10.1016/J.Abb.2014.12.006 |
0.657 |
|
2014 |
Peek J, Castiglione G, Shi T, Christendat D. Isolation and molecular characterization of the shikimate dehydrogenase domain from the Toxoplasma gondii AROM complex. Molecular and Biochemical Parasitology. 194: 16-9. PMID 24731949 DOI: 10.1016/J.Molbiopara.2014.04.002 |
0.619 |
|
2014 |
Peek J, Shi T, Christendat D. Identification of Novel Polyphenolic Inhibitors of Shikimate Dehydrogenase (AroE). Journal of Biomolecular Screening. 19: 1090-8. PMID 24632659 DOI: 10.1177/1087057114527127 |
0.571 |
|
2014 |
Peek J, Christendat D. Structural studies on dehydroshikimate dehydratase Acta Crystallographica Section A. 70. DOI: 10.1107/S2053273314095242 |
0.597 |
|
2014 |
Prezioso S, Christendat D. Structural Insights into Regulation of Quinate Degradation in Bacteria Acta Crystallographica Section A. 70. DOI: 10.1107/S2053273314085945 |
0.4 |
|
2013 |
Moeder W, Garcia-Petit C, Ung H, Fucile G, Samuel MA, Christendat D, Yoshioka K. Crystal structure and biochemical analyses reveal that the Arabidopsis triphosphate tunnel metalloenzyme AtTTM3 is a tripolyphosphatase involved in root development. The Plant Journal : For Cell and Molecular Biology. 76: 615-26. PMID 24004165 DOI: 10.1111/Tpj.12325 |
0.473 |
|
2013 |
Khoshraftar S, Hung S, Khan S, Gong Y, Tyagi V, Parkinson J, Sain M, Moses AM, Christendat D. Sequencing and annotation of the Ophiostoma ulmi genome. Bmc Genomics. 14: 162. PMID 23496816 DOI: 10.1186/1471-2164-14-162 |
0.303 |
|
2013 |
Peek J, Garcia C, Lee J, Christendat D. Insights into the function of RifI2: structural and biochemical investigation of a new shikimate dehydrogenase family protein. Biochimica Et Biophysica Acta. 1834: 516-23. PMID 23142411 DOI: 10.1016/J.Bbapap.2012.10.016 |
0.684 |
|
2011 |
Peek J, Lee J, Hu S, Senisterra G, Christendat D. Structural and mechanistic analysis of a novel class of shikimate dehydrogenases: evidence for a conserved catalytic mechanism in the shikimate dehydrogenase family. Biochemistry. 50: 8616-27. PMID 21846128 DOI: 10.1021/Bi200586Y |
0.688 |
|
2011 |
Fucile G, Garcia C, Carlsson J, Sunnerhagen M, Christendat D. Structural and biochemical investigation of two Arabidopsis shikimate kinases: the heat-inducible isoform is thermostable. Protein Science : a Publication of the Protein Society. 20: 1125-36. PMID 21520319 DOI: 10.1002/Pro.640 |
0.408 |
|
2011 |
Fucile G, Di Biase D, Nahal H, La G, Khodabandeh S, Chen Y, Easley K, Christendat D, Kelley L, Provart NJ. ePlant and the 3D data display initiative: integrative systems biology on the world wide web. Plos One. 6: e15237. PMID 21249219 DOI: 10.1371/Journal.Pone.0015237 |
0.309 |
|
2009 |
Sun W, Shahinas D, Bonvin J, Hou W, Kimber MS, Turnbull J, Christendat D. The crystal structure of Aquifex aeolicus prephenate dehydrogenase reveals the mode of tyrosine inhibition. The Journal of Biological Chemistry. 284: 13223-32. PMID 19279014 DOI: 10.1074/Jbc.M806272200 |
0.495 |
|
2008 |
Fucile G, Falconer S, Christendat D. Evolutionary diversification of plant shikimate kinase gene duplicates. Plos Genetics. 4: e1000292. PMID 19057671 DOI: 10.1371/Journal.Pgen.1000292 |
0.365 |
|
2008 |
Singh S, Stavrinides J, Christendat D, Guttman DS. A phylogenomic analysis of the shikimate dehydrogenases reveals broadscale functional diversification and identifies one functionally distinct subclass. Molecular Biology and Evolution. 25: 2221-32. PMID 18669580 DOI: 10.1093/Molbev/Msn170 |
0.45 |
|
2008 |
Baxter J, Moeder W, Urquhart W, Shahinas D, Chin K, Christendat D, Kang HG, Angelova M, Kato N, Yoshioka K. Identification of a functionally essential amino acid for Arabidopsis cyclic nucleotide gated ion channels using the chimeric AtCNGC11/12 gene. The Plant Journal : For Cell and Molecular Biology. 56: 457-69. PMID 18643993 DOI: 10.1111/J.1365-313X.2008.03619.X |
0.344 |
|
2008 |
Saridakis V, Shahinas D, Xu X, Christendat D. Structural insight on the mechanism of regulation of the MarR family of proteins: high-resolution crystal structure of a transcriptional repressor from Methanobacterium thermoautotrophicum. Journal of Molecular Biology. 377: 655-67. PMID 18272181 DOI: 10.1016/J.Jmb.2008.01.001 |
0.414 |
|
2008 |
Peek J, Singh S, Stavrindes J, Guttman D, Christendat D. Using natural variations among shikimate dehydrogenases to study modes of substrate selectivity Acta Crystallographica Section a Foundations of Crystallography. 64: C252-C253. DOI: 10.1107/S0108767308091897 |
0.546 |
|
2008 |
Shahinas D, Saridakis V, Christendat D. Structural insight on the mechanism of regulation of the MarR family of proteins Acta Crystallographica Section a Foundations of Crystallography. 64: C299-C299. DOI: 10.1107/S0108767308090430 |
0.395 |
|
2007 |
Singh SA, Christendat D. The DHQ-dehydroshikimate-SDH-shikimate-NADP(H) complex: Insights into metabolite transfer in the shikimate pathway Crystal Growth and Design. 7: 2153-2160. DOI: 10.1021/Cg7007107 |
0.394 |
|
2006 |
Singh SA, Christendat D. Structure of Arabidopsis dehydroquinate dehydratase-shikimate dehydrogenase and implications for metabolic channeling in the shikimate pathway. Biochemistry. 45: 7787-96. PMID 16784230 DOI: 10.1021/Bi060366+ |
0.476 |
|
2006 |
Sun W, Singh S, Zhang R, Turnbull JL, Christendat D. Crystal structure of prephenate dehydrogenase from Aquifex aeolicus. Insights into the catalytic mechanism. The Journal of Biological Chemistry. 281: 12919-28. PMID 16513644 DOI: 10.1074/Jbc.M511986200 |
0.508 |
|
2005 |
Sun W, Xu X, Pavlova M, Edwards AM, Joachimiak A, Savchenko A, Christendat D. The crystal structure of a novel SAM-dependent methyltransferase PH1915 from Pyrococcus horikoshii. Protein Science : a Publication of the Protein Society. 14: 3121-8. PMID 16260766 DOI: 10.1110/Ps.051821805 |
0.474 |
|
2005 |
Singh S, Korolev S, Koroleva O, Zarembinski T, Collart F, Joachimiak A, Christendat D. Crystal structure of a novel shikimate dehydrogenase from Haemophilus influenzae. The Journal of Biological Chemistry. 280: 17101-8. PMID 15735308 DOI: 10.1074/Jbc.M412753200 |
0.478 |
|
2004 |
Sanishvili R, Pennycooke M, Gu J, Xu X, Joachimiak A, Edwards AM, Christendat D. Crystal structure of the hypothetical protein TA1238 from Thermoplasma acidophilum: a new type of helical super-bundle. Journal of Structural and Functional Genomics. 5: 231-40. PMID 15704011 DOI: 10.1007/S10969-005-3789-1 |
0.452 |
|
2004 |
Saridakis V, Yakunin A, Xu X, Anandakumar P, Pennycooke M, Gu J, Cheung F, Lew JM, Sanishvili R, Joachimiak A, Arrowsmith CH, Christendat D, Edwards AM. The structural basis for methylmalonic aciduria. The crystal structure of archaeal ATP:cobalamin adenosyltransferase. The Journal of Biological Chemistry. 279: 23646-53. PMID 15044458 DOI: 10.1074/Jbc.M401395200 |
0.385 |
|
2004 |
Kim Y, Yakunin AF, Kuznetsova E, Xu X, Pennycooke M, Gu J, Cheung F, Proudfoot M, Arrowsmith CH, Joachimiak A, Edwards AM, Christendat D. Structure- and function-based characterization of a new phosphoglycolate phosphatase from Thermoplasma acidophilum. The Journal of Biological Chemistry. 279: 517-26. PMID 14555659 DOI: 10.1074/Jbc.M306054200 |
0.395 |
|
2003 |
Tao X, Khayat R, Christendat D, Savchenko A, Xu X, Goldsmith-Fischman S, Honig B, Edwards A, Arrowsmith CH, Tong L. Crystal structures of MTH1187 and its yeast ortholog YBL001c. Proteins. 52: 478-80. PMID 12866058 DOI: 10.1002/Prot.10443 |
0.379 |
|
2003 |
Kimber MS, Vallee F, Houston S, Necakov A, Skarina T, Evdokimova E, Beasley S, Christendat D, Savchenko A, Arrowsmith CH, Vedadi M, Gerstein M, Edwards AM. Data mining crystallization databases: knowledge-based approaches to optimize protein crystal screens. Proteins. 51: 562-8. PMID 12784215 DOI: 10.1002/Prot.10340 |
0.326 |
|
2003 |
Yee A, Pardee K, Christendat D, Savchenko A, Edwards AM, Arrowsmith CH. Structural proteomics: toward high-throughput structural biology as a tool in functional genomics. Accounts of Chemical Research. 36: 183-9. PMID 12641475 DOI: 10.1021/Ar010126G |
0.383 |
|
2003 |
Zarembinski TI, Kim Y, Peterson K, Christendat D, Dharamsi A, Arrowsmith CH, Edwards AM, Joachimiak A. Deep trefoil knot implicated in RNA binding found in an archaebacterial protein. Proteins. 50: 177-83. PMID 12486711 DOI: 10.1002/Prot.10311 |
0.442 |
|
2002 |
Keller JP, Smith PM, Benach J, Christendat D, deTitta GT, Hunt JF. The crystal structure of MT0146/CbiT suggests that the putative precorrin-8w decarboxylase is a methyltransferase. Structure (London, England : 1993). 10: 1475-87. PMID 12429089 DOI: 10.1016/S0969-2126(02)00876-6 |
0.515 |
|
2002 |
Batra R, Christendat D, Edwards A, Arrowsmith C, Tong L. Crystal structure of MTH169, a crucial component of phosphoribosylformylglycinamidine synthetase. Proteins. 49: 285-8. PMID 12211007 DOI: 10.1002/Prot.10209 |
0.362 |
|
2002 |
Christendat D, Saridakis V, Kim Y, Kumar PA, Xu X, Semesi A, Joachimiak A, Arrowsmith CH, Edwards AM. The crystal structure of hypothetical protein MTH1491 from Methanobacterium thermoautotrophicum. Protein Science : a Publication of the Protein Society. 11: 1409-14. PMID 12021439 DOI: 10.1110/Ps.4720102 |
0.467 |
|
2002 |
Saridakis V, Christendat D, Thygesen A, Arrowsmith CH, Edwards AM, Pai EF. Crystal structure of Methanobacterium thermoautotrophicum conserved protein MTH1020 reveals an NTN-hydrolase fold. Proteins. 48: 141-3. PMID 12012346 DOI: 10.1002/Prot.10147 |
0.433 |
|
2001 |
Bertone P, Kluger Y, Lan N, Zheng D, Christendat D, Yee A, Edwards AM, Arrowsmith CH, Montelione GT, Gerstein M. SPINE: an integrated tracking database and data mining approach for identifying feasible targets in high-throughput structural proteomics. Nucleic Acids Research. 29: 2884-98. PMID 11433035 DOI: 10.1093/Nar/29.13.2884 |
0.361 |
|
2001 |
Saridakis V, Christendat D, Kimber MS, Dharamsi A, Edwards AM, Pai EF. Insights into ligand binding and catalysis of a central step in NAD+ synthesis: structures of Methanobacterium thermoautotrophicum NMN adenylyltransferase complexes. The Journal of Biological Chemistry. 276: 7225-32. PMID 11063748 DOI: 10.1074/Jbc.M008810200 |
0.427 |
|
2000 |
Edwards AM, Arrowsmith CH, Christendat D, Dharamsi A, Friesen JD, Greenblatt JF, Vedadi M. Protein production: feeding the crystallographers and NMR spectroscopists. Nature Structural Biology. 7: 970-2. PMID 11104003 DOI: 10.1038/80751 |
0.309 |
|
2000 |
Christendat D, Yee A, Dharamsi A, Kluger Y, Gerstein M, Arrowsmith CH, Edwards AM. Structural proteomics: Prospects for high throughput sample preparation Progress in Biophysics and Molecular Biology. 73: 339-345. PMID 11063779 DOI: 10.1016/S0079-6107(00)00010-9 |
0.334 |
|
2000 |
Christendat D, Yee A, Dharamsi A, Kluger Y, Savchenko A, Cort JR, Booth V, Mackereth CD, Saridakis V, Ekiel I, Kozlov G, Maxwell KL, Wu N, McIntosh LP, Gehring K, et al. Structural proteomics of an archaeon. Nature Structural Biology. 7: 903-9. PMID 11017201 DOI: 10.1038/82823 |
0.414 |
|
2000 |
Christendat D, Saridakis V, Dharamsi A, Bochkarev A, Pai EF, Arrowsmith CH, Edwards AM. Crystal structure of dTDP-4-keto-6-deoxy-D-hexulose 3,5-epimerase from Methanobacterium thermoautotrophicum complexed with dTDP Journal of Biological Chemistry. 275: 24608-24612. PMID 10827167 DOI: 10.1074/Jbc.C000238200 |
0.447 |
|
1999 |
Christendat D, Turnbull JL. Identifying groups involved in the binding of prephenate to prephenate dehydrogenase from Escherichia coli Biochemistry. 38: 4782-4793. PMID 10200166 DOI: 10.1021/Bi982673O |
0.384 |
|
1998 |
Christendat D, Saridakis VC, Turnbull JL. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli Biochemistry. 37: 15703-15712. PMID 9843375 DOI: 10.1021/Bi981412B |
0.406 |
|
1996 |
Christendat D, Turnbull J. Identification of active site residues of chorismate mutase - Prephenate dehydrogenase from Escherichia coli Biochemistry. 35: 4468-4479. PMID 8605196 DOI: 10.1021/Bi9525637 |
0.388 |
|
Show low-probability matches. |