Dan Botez - Publications

Affiliations: 
University of Wisconsin, Madison, Madison, WI 
Area:
Materials Science Engineering, Optics Physics, Electronics and Electrical Engineering

182 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 Kim JH, Oberhausen W, Jung S, Xu J, Mei J, Kirch JD, Mawst LJ, Botez D, Belkin MA. Terahertz difference-frequency-generation quantum cascade lasers on silicon with wire grid current injectors. Optics Express. 30: 25410-25417. PMID 36237072 DOI: 10.1364/OE.454780  0.583
2021 Ryu JH, Kirch JD, Knipfer B, Liu Z, Turville-Heitz M, Earles T, Marsland RA, Strömberg A, Omanakuttan G, Sun YT, Lourdudoss S, Botez D, Mawst LJ. Beam stability of buried-heterostructure quantum cascade lasers employing HVPE regrowth. Optics Express. 29: 2819-2826. PMID 33726471 DOI: 10.1364/OE.414489  0.574
2020 Boyle C, Oresick KM, Kirch JD, Flores YV, Mawst LJ, Botez D. Erratum: “Carrier leakage via interface-roughness scattering bridges gap between theoretical and experimental internal efficiencies of quantum cascade lasers” [Appl. Phys. Lett. 117, 051101 (2020)] Applied Physics Letters. 117: 109901. DOI: 10.1063/5.0025953  0.535
2020 Boyle C, Oresick KM, Kirch JD, Flores YV, Mawst LJ, Botez D. Carrier leakage via interface-roughness scattering bridges gap between theoretical and experimental internal efficiencies of quantum cascade lasers Applied Physics Letters. 117: 51101. DOI: 10.1063/5.0007812  0.589
2019 Jaffe GR, Mei S, Boyle CA, Kirch JD, Savage DE, Botez D, Mawst LJ, Knezevic I, Lagally MG, Eriksson MA. Measurements of the Thermal Resistivity of InAlAs, InGaAs and InAlAs/InGaAs Superlattices. Acs Applied Materials & Interfaces. PMID 30807087 DOI: 10.1021/Acsami.8B17268  0.451
2018 Botez D, Kirch JD, Boyle C, Oresick KM, Sigler C, Kim H, Knipfer BB, Ryu JH, Lindberg D, Earles T, Mawst LJ, Flores YV. High-efficiency, high-power mid-infrared quantum cascade lasers [Invited] Optical Materials Express. 8: 1378. DOI: 10.1364/Ome.8.001378  0.692
2017 Jung S, Jiang Y, Kim JH, Consolino L, Bartalini S, Natale PD, Vitello M, Fujita K, Hitaka M, Ito A, Kirch J, Botez D, Demmerle F, Boehm G, Amann M, et al. Narrow-linewidth ultra-broadband terahertz sources based on difference-frequency generation in mid-infrared quantum cascade lasers Proceedings of Spie. 10123: 1012315. DOI: 10.1117/12.2256099  0.524
2017 Botez D, Kirch JD, Chang C, Boyle C, Kim H, Oresick KM, Sigler C, Mawst LJ, Jo M, Shin JC, Doo G, Lindberg DF, Earles TL. High internal differential efficiency mid-infrared quantum cascade lasers Proceedings of Spie. 10123. DOI: 10.1117/12.2249537  0.824
2017 Sigler C, Gibson R, Boyle C, Kirch JD, Lindberg D, Earles T, Botez D, Mawst LJ, Bedford R. Spectrally resolved modal characteristics of leaky-wave-coupled quantum cascade phase-locked laser arrays Optical Engineering. 57: 1. DOI: 10.1117/1.Oe.57.1.011013  0.681
2017 Sigler C, Boyle CA, Kirch JD, Lindberg D, Earles T, Botez D, Mawst LJ. 4.7 μm-Emitting Near-Resonant Leaky-Wave-Coupled Quantum Cascade Laser Phase-Locked Arrays Ieee Journal of Selected Topics in Quantum Electronics. 23: 1-6. DOI: 10.1109/Jstqe.2017.2704279  0.684
2017 Jung S, Kirch J, Kim JH, Mawst LJ, Botez D, Belkin MA. Quantum cascade lasers transfer-printed on silicon-on-sapphire Applied Physics Letters. 111: 211102. DOI: 10.1063/1.5002157  0.645
2017 Kirch JD, Kim H, Boyle C, Chang C, Mawst LJ, Lindberg D, Earles T, Botez D, Helm M, von Borany J, Akhmadaliev S, Böttger R, Reyner C. Proton implantation for electrical insulation of the InGaAs/InAlAs superlattice material used in 8–15 μm-emitting quantum cascade lasers Applied Physics Letters. 110: 082102. DOI: 10.1063/1.4977067  0.57
2016 Kirch JD, Chang CC, Boyle C, Mawst LJ, Lindberg D, Earles T, Botez D. 86% internal differential efficiency from 8 to 9 µm-emitting, step-taper active-region quantum cascade lasers. Optics Express. 24: 24483-24494. PMID 27828176 DOI: 10.1364/Oe.24.024483  0.825
2016 Jonasson O, Mei S, Karimi F, Kirch J, Botez D, Mawst L, Knezevic I. Quantum Transport Simulation of High-Power 4.6-μm Quantum Cascade Lasers Photonics. 3: 38. DOI: 10.3390/Photonics3020038  0.621
2016 Spott A, Peters J, Davenport M, Stanton E, Zhang C, Merritt C, Bewley W, Vurgaftman I, Kim C, Meyer J, Kirch J, Mawst L, Botez D, Bowers J. Heterogeneously Integrated Distributed Feedback Quantum Cascade Lasers on Silicon Photonics. 3: 35. DOI: 10.3390/Photonics3020035  0.675
2016 Kirch JD, Chang CC, Boyle C, Mawst LJ, Lindberg D, Earles T, Botez D. 86% internal differential efficiency from 8 to 9 μm-emitting, step-taper active-region quantum cascade lasers Optics Express. 24: 24483-24494. DOI: 10.1364/OE.24.024483  0.644
2016 Spott A, Peters J, Davenport ML, Stanton EJ, Merritt CD, Bewley WW, Vurgaftman I, Kim CS, Meyer JR, Kirch J, Mawst LJ, Botez D, Bowers JE. Quantum cascade laser on silicon Optica. 3: 545-551. DOI: 10.1117/12.2248760  0.619
2016 Kirch JD, Chang CC, Boyle C, Mawst LJ, Lindberg D, Earles T, Botez D. Step-taper active-region quantum cascade lasers for carrier-leakage suppression and high internal differential efficiency Proceedings of Spie - the International Society For Optical Engineering. 9767. DOI: 10.1117/12.2209716  0.674
2016 Boyle C, Sigler C, Kirch JD, Lindberg D, Earles T, Botez D, Mawst LJ. Surface-emitting quantum cascade laser with 2nd-order metal-semiconductor gratings for single-lobe emission Proceedings of Spie - the International Society For Optical Engineering. 9767. DOI: 10.1117/12.2209105  0.678
2016 Boyle C, Sigler C, Kirch JD, Lindberg DF, Earles T, Botez D, Mawst LJ. High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode Applied Physics Letters. 108. DOI: 10.1063/1.4944846  0.687
2016 Rajeev A, Mawst LJ, Kirch JD, Botez D, Miao J, Buelow P, Kuech TF, Li X, Sigler C, Babcock SE, Earles T. Regrowth of quantum cascade laser active regions on metamorphic buffer layers Journal of Crystal Growth. DOI: 10.1016/J.Jcrysgro.2016.01.029  0.609
2015 Sin Y, Lingley Z, Brodie M, Presser N, Moss SC, Kirch J, Chang CC, Boyle C, Mawst LJ, Botez D, Lindberg D, Earles T. Destructive physical analysis of degraded quantum cascade lasers Proceedings of Spie - the International Society For Optical Engineering. 9382. DOI: 10.1117/12.2076641  0.667
2015 Napartovich AP, Elkin NN, Vysotsky DV, Kirch J, Sigler C, Botez D, Mawst LJ, Belyanin A. Above-threshold numerical modeling of high-index-contrast photonic-crystal quantum cascade lasers Proceedings of Spie - the International Society For Optical Engineering. 9382. DOI: 10.1117/12.2076504  0.671
2015 Chang CC, Kirch JD, Boyle C, Sigler C, Mawst LJ, Botez D, Zutter B, Buelow P, Schulte K, Kuech T, Earles T. Planarized process for resonant leaky-wave coupled phase-locked arrays of mid-IR quantum cascade lasers Proceedings of Spie - the International Society For Optical Engineering. 9382. DOI: 10.1117/12.2075667  0.663
2015 Mawst LJ, Rajeev A, Kirch JD, Kim TW, Botez D, Zutter B, Buelow P, Schulte K, Kuech TF, Wood A, Babcock SE, Earles T. Quantum-cascade-laser active regions on metamorphic buffer layers Proceedings of Spie - the International Society For Optical Engineering. 9370. DOI: 10.1117/12.2075457  0.669
2015 Sigler C, Chang CC, Kirch JD, Mawst LJ, Botez D, Earles T. Design of Resonant Leaky-Wave Coupled Phase-Locked Arrays of Mid-IR Quantum Cascade Lasers Ieee Journal On Selected Topics in Quantum Electronics. 21. DOI: 10.1109/Jstqe.2015.2438823  0.806
2015 Botez D, Garrod T, Mawst LJ. High CW wallplug efficiency 1.5 micron-emitting diode lasers 2015 Ieee Photonics Conference, Ipc 2015. 551-552. DOI: 10.1109/IPCon.2015.7323726  0.651
2015 Boyle C, Sigler C, Kirch JD, Lindberg D, Earles T, Botez D, Mawst LJ. Single-lobe surface-emitting quantum cascade laser with 2nd-order metal-semiconductor gratings 2015 Ieee Photonics Conference, Ipc 2015. 547-548. DOI: 10.1109/IPCon.2015.7323703  0.645
2015 Botez D, Chang CC, Mawst LJ. Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3-16 μm)-emitting quantum cascade lasers Journal of Physics D: Applied Physics. 49. DOI: 10.1088/0022-3727/49/4/043001  0.816
2015 Kirch JD, Chang CC, Boyle C, Mawst LJ, Lindberg D, Earles T, Botez D. Highly temperature insensitive, low threshold-current density (λ = 8.7-8.8 μ m) quantum cascade lasers Applied Physics Letters. 106. DOI: 10.1063/1.4917499  0.685
2015 Kirch JD, Chang CC, Boyle C, Mawst LJ, Lindberg D, Earles T, Botez D. 5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers Applied Physics Letters. 106. DOI: 10.1063/1.4908178  0.718
2015 Chang CC, Kirch JD, Buelow P, Boyle C, Kuech TF, Lindberg D, Earles T, Botez D, Mawst LJ. Buried-heterostructure mid-infrared quantum cascade lasers fabricated by nonselective regrowth and chemical polishing Electronics Letters. 51: 1098-1100. DOI: 10.1049/El.2015.1094  0.696
2014 Garrod T, Olson D, Klaus M, Zenner C, Galstad C, Brunet F, Mawst L, Botez D. High-power and high-efficiency broad-area diode laser emitting at 1.5 μm Proceedings of Spie. 9002. DOI: 10.1117/12.2040458  0.708
2014 Sin Y, Presser N, Brodie M, Lingley Z, Moss SC, Kirch J, Chang CC, Boyle C, Mawst LJ, Botez D, Lindberg D, Earles T. Catastrophic degradation in quantum cascade lasers emitting at 8.4 μm Proceedings - 2014 Summer Topicals Meeting Series, Sum 2014. 75-76. DOI: 10.1109/SUM.2014.46  0.607
2014 Chang CC, Kirch JD, Boyle C, Sigler C, Mawst LJ, Botez D, Zutter B, Schulte K, Kuech T, Lindberg D, Earles T. Resonant leaky-wave coupled phase-locked arrays of mid-infrared quantum cascade lasers Conference Digest - Ieee International Semiconductor Laser Conference. 36-37. DOI: 10.1109/ISLC.2014.151  0.585
2014 Garrod T, Olson D, Klaus M, Zenner C, Galstad C, Mawst L, Botez D. 50% continuous-wave wallplug efficiency from 1.53 μ m-emitting broad-area diode lasers Applied Physics Letters. 105. DOI: 10.1063/1.4893576  0.682
2014 Sigler C, Kirch JD, Earles T, Mawst LJ, Yu Z, Botez D. Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes Applied Physics Letters. 104. DOI: 10.1063/1.4869561  0.69
2014 Mawst LJ, Kirch JD, Kim T, Garrod T, Boyle C, Botez D, Zutter B, Schulte K, Kuech TF, Bouzi PM, Gmachl CF, Earles T. Low-strain, quantum-cascade-laser active regions grown on metamorphic buffer layers for emission in the 3.0-4.0 μm wavelength region Iet Optoelectronics. 8: 25-32. DOI: 10.1049/Iet-Opt.2013.0060  0.638
2014 Kirch JD, Chang CC, Boyle C, Mawst LJ, Lindberg D, Earles T, Botez D. 3 W near-diffraction-limited power from high-index-contrast photonic-crystal quantum cascade lasers Optics Infobase Conference Papers 0.641
2013 Garrod T, Brunet F, Galstad C, Klaus M, Olson D, Zenner C, Xiao Y, Mawst L, Botez D. High-power and high-efficiency distributed feedback (DFB) lasers operating in the 1.4-1.6 μm range for eye-safe applications Proceedings of Spie. 8605. DOI: 10.1117/12.2004060  0.678
2013 Chang CC, Botez D, Wan L, Nealey PF, Ruder S, Kuech TF. Fabrication of large-area, high-density Ni nanopillar arrays on GaAs substrates using diblock copolymer lithography and electrodeposition Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics. 31. DOI: 10.1116/1.4798464  0.738
2013 Botez D, Shin JC, Kirch JD, Chang C, Mawst LJ, Earles T. Correction to "Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers'' [Jul/Aug 13 article no. 1200312] Ieee Journal of Selected Topics in Quantum Electronics. 19: 9700101-9700101. DOI: 10.1109/Jstqe.2013.2273511  0.775
2013 Botez D, Shin JC, Kirch JD, Chang CC, Mawst LJ, Earles T. Multidimensional conduction-band engineering for maximizing the continuous-wave (CW) wallplug efficiencies of mid-infrared quantum cascade lasers Ieee Journal On Selected Topics in Quantum Electronics. 19. DOI: 10.1109/Jstqe.2012.2237387  0.824
2013 Mawst LJ, Kirch JD, Chang CC, Kim T, Garrod T, Botez D, Ruder S, Kuech TF, Earles T, Tatavarti R, Pan N, Wibowo A. InGaAs/AlInAs strain-compensated Superlattices grown on metamorphic buffer layers for low-strain, 3.6 μm-emitting quantum-cascade-laser active regions Journal of Crystal Growth. 370: 230-235. DOI: 10.1016/J.Jcrysgro.2012.06.053  0.617
2012 Botez D, Shin JC, Kirch JD, Chang CC, Mawst LJ, Earles T. Tapered active-region, mid-infrared quantum cascade lasers for complete suppression of carrier-leakage currents Proceedings of Spie - the International Society For Optical Engineering. 8277. DOI: 10.1117/12.907439  0.819
2012 Napartovich AP, Elkin NN, Vysotsky DV, Botez D, Mawst LJ. Numerical studies of thermal lensing effects on high-CW-power single-spatial-mode diode lasers Proceedings of Spie - the International Society For Optical Engineering. 8277. DOI: 10.1117/12.907212  0.644
2012 Mawst LJ, Botez D. Mode control and monolithic coherent-power scaling 2012 Ieee Photonics Society Summer Topical Meeting Series, Psst 2012. 45-46. DOI: 10.1109/PHOSST.2012.6280778  0.591
2012 Botez D, Kirch JD, Shin JC, Chang CC, Garrod T, Mawst LJ, Earles T. Two-dimensional conduction-band engineering for performance optimization of quantum cascade lasers Conference Digest - Ieee International Semiconductor Laser Conference. 30-31. DOI: 10.1109/ISLC.2012.6348312  0.65
2012 Mawst LJ, Botez D, Kuech TF. Metamorphic buffer layers for mid-infrared emitting semiconductor lasers Conference On Optoelectronic and Microelectronic Materials and Devices, Proceedings, Commad. 99-100. DOI: 10.1109/COMMAD.2012.6472379  0.532
2012 Kirch J, Shin J, Chang C, Mawst L, Botez D, Earles T. Erratum for ‘Tapered active-region quantum cascade lasers (=4.8 [micro sign]m) for virtual suppression of carrier-leakage currents’ Electronics Letters. 48: 665. DOI: 10.1049/El.2012.1453  0.634
2012 Kirch JD, Shin JC, Chang CC, Mawst LJ, Botez D, Earles T. Tapered active-region quantum cascade lasers (λ=4.8 μm) for virtual suppression of carrier-leakage currents Electronics Letters. 48: 234-235. DOI: 10.1049/El.2012.0017  0.658
2012 Shin JC, Mawst LJ, Botez D. Crystal growth via metal-organic vapor phase epitaxy of quantum-cascade-laser structures composed of multiple alloy compositions Journal of Crystal Growth. 357: 15-19. DOI: 10.1016/J.Jcrysgro.2012.07.013  0.589
2012 Garrod T, Kirch J, Kim T, Mawst LJ, Botez D, Ruder S, Kuech TF, Earles T. Deep-well quantum cascade laser structure on metamorphic buffer layer 2012 Conference On Lasers and Electro-Optics, Cleo 2012 0.597
2011 Napartovich AP, Elkin NN, Vysotsky DV, Mawst LJ, Botez D. Simple design of an edge-emitting diode laser for preventing spatial multimoding via thermal lensing. Optics Letters. 36: 4344-6. PMID 22089558 DOI: 10.1364/Ol.36.004344  0.699
2011 Napartovich AP, Elkin NN, Vysotsky DV, Mawst LJ, Botez D. Simple design of an edge-emitting diode laser for preventing spatial multimoding via thermal lensing Optics Letters. 36: 4344-4346. DOI: 10.1364/OL.36.004344  0.553
2011 Botez D, Shin JC, Kumar S, Kirch J, Chang CC, Mawst LJ, Vurgaftman I, Meyer JR, Bismuto A, Hinkov B, Faist J. The temperature dependence of key electro-optical characteristics for mid-infrared emitting quantum cascade lasers Proceedings of Spie - the International Society For Optical Engineering. 7953. DOI: 10.1117/12.874197  0.806
2011 Napartovich AP, Elkin NN, Troshchieva VN, Vysotsky DV, Mawst LJ, Botez D. Comprehensive analysis of mode competition in high-power CW-operating diode lasers of the antiresonant reflecting optical waveguide (ARROW) type Ieee Journal On Selected Topics in Quantum Electronics. 17: 1735-1744. DOI: 10.1109/Jstqe.2011.2113392  0.668
2011 Seibert CS, D'Souza M, Shin JC, Mawst LJ, Botez D, Hall DC. Fabrication of midinfrared quantum cascade laser via oxygen-enhanced nonselective wet thermal oxidation Journal of Applied Physics. 109. DOI: 10.1063/1.3544489  0.605
2010 Botez D, Shin JC, Kumar S, Mawst LJ, Vurgaftman I, Meyer JR. Electron leakage and its suppression via deep-well structures in 4.5- to 5.0-μm-emitting quantum cascade lasers Optical Engineering. 49. DOI: 10.1117/1.3509368  0.626
2010 Botez D, Kumar S, Shin JC, Mawst LJ, Vurgaftman I, Meyer JR. Erratum: “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers” [Appl. Phys. Lett. 97, 071101 (2010)] Applied Physics Letters. 97: 199901. DOI: 10.1063/1.3512956  0.547
2010 Botez D, Kumar S, Shin JC, Mawst LJ, Vurgaftman I, Meyer JR. Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers Applied Physics Letters. 97. DOI: 10.1063/1.3478836  0.655
2010 Shin JC, D'Souza M, Kirch J, Park JH, Mawst LJ, Botez D. Characteristics of mid-IR-emitting deep-well quantum cascade lasers grown by MOCVD Journal of Crystal Growth. 312: 1379-1382. DOI: 10.1016/J.Jcrysgro.2009.09.034  0.649
2009 Shin JC, D'Souza M, Xu D, Kirch J, Mawst LJ, Botez D, Vurgaftman I, Meyer JR. Characteristics of deep-well 4.8 μm-emitting quantum-cascade lasers grown by MOCVD Proceedings of Spie - the International Society For Optical Engineering. 7230. DOI: 10.1117/12.808268  0.668
2009 Rathi MK, Tsvid G, Shin JC, Khandekar AA, Botez D, Kuech TF. Surface states passivation for and regrowth around nanoposts formed for the fabrication of InP-based intersubband quantum box lasers Conference Proceedings - International Conference On Indium Phosphide and Related Materials. 83-86. DOI: 10.1109/ICIPRM.2009.5012428  0.796
2009 Shin JC, D'Souza M, Liu Z, Kirch J, Mawst LJ, Botez D, Vurgaftman I, Meyer JR. Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers Applied Physics Letters. 94. DOI: 10.1063/1.3139069  0.665
2009 Shin JC, Mawst LJ, Botez D, Vurgaftman I, Meyer JR. Ultra-low temperature sensitive deep-well quantum cascade lasers (λ=4.8m) via uptapering conduction band edge of injector regions Electronics Letters. 45: 741-743. DOI: 10.1049/El.2009.1393  0.662
2009 Rathi MK, Tsvid G, Khandekar AA, Shin JC, Botez D, Kuech TF. Passivation of interfacial states for GaAs- and InGaAs/inp-based regrown nanostructures Journal of Electronic Materials. 38: 2023-2032. DOI: 10.1007/S11664-009-0887-Z  0.737
2008 Vysotsky DV, Elkin NN, Napartovich AP, Troshchieva VN, Botez D, Mawst LJ. Numerical study of the influence of thermooptic effects on the competition of modes in diode lasers Quantum Electronics. 38: 215-221. DOI: 10.1070/Qe2008V038N03Abeh013725  0.676
2008 Gao X, Botez D, Knezevic I. Phonon confinement and electron transport in GaAs-based quantum cascade structures Journal of Applied Physics. 103. DOI: 10.1063/1.2899963  0.369
2008 Xu DP, D'Souza M, Shin JC, Mawst LJ, Botez D. InGaAs/GaAsP/AlGaAs, deep-well, quantum-cascade light-emitting structures grown by metalorganic chemical vapor deposition Journal of Crystal Growth. 310: 2370-2376. DOI: 10.1016/J.Jcrysgro.2007.11.218  0.572
2008 Gao X, Botez D, Knezevic I. Confined phonon scattering in multivalley Monte Carlo simulation of quantum cascade lasers Journal of Computational Electronics. 7: 209-212. DOI: 10.1007/S10825-008-0175-9  0.411
2007 Botez D. Semiconductor Lasers For Efficient And Reliable Cw Operation In The Mid- And Far-Infrared: Intersubband Quantum-Box Lasers International Journal of Nanoscience. 6: 203-207. DOI: 10.1142/S0219581X07004584  0.557
2007 Li S, Botez D. Analysis of 2-D Surface-Emitting ROW-DFB Semiconductor Lasers for High-Power Single-Mode Operation Ieee Journal of Quantum Electronics. 43: 655-668. DOI: 10.1109/Jqe.2007.900264  0.497
2007 Lyakh A, Zory P, Wasserman D, Shu G, Gmachl C, D'Souza M, Botez D, Bour D. Narrow stripe-width, low-ridge configuration for high power quantum cascade lasers Conference On Lasers and Electro-Optics, 2007, Cleo 2007. DOI: 10.1109/CLEO.2007.4453049  0.472
2007 Gao X, D'Souza M, Botez D, Knezevic I. Design and simulation of deep-well GaAs-based quantum cascade lasers for 6.7 μm room-temperature operation Journal of Applied Physics. 102. DOI: 10.1063/1.2820039  0.496
2007 Lyakh A, Zory P, D’Souza M, Botez D, Bour D. Substrate-emitting, distributed feedback quantum cascade lasers Applied Physics Letters. 91: 181116. DOI: 10.1063/1.2803851  0.84
2007 Lyakh A, Zory P, Wasserman D, Shu G, Gmachl CF, D'Souza M, Botez D, Bour D. Narrow stripe-width, low-ridge high power quantum cascade lasers Applied Physics Letters. 90: 141107. DOI: 10.1063/1.2720260  0.852
2007 Gao X, D'Souza M, Botez D, Knezevic I. Design and optimization of a GaAs-based sub-7-μm quantum cascade laser based on multivalley Monte Carlo simulation 2007 International Conference On Numerical Simulation of Semiconductor Optoelectronic Devices - Nusod'07. 17-18. DOI: 10.1007/S11082-008-9221-X  0.435
2007 Gao X, Botez D, Knezevic I. Monte Carlo modeling of X-valley leakage in quantum cascade lasers Journal of Computational Electronics. 6: 305-308. DOI: 10.1007/S10825-006-0117-3  0.365
2006 Napartovich AP, Elkin NN, Sukharev AG, Troshchieva VN, Vysotsky DV, Nesnidal M, Stiers E, Mawst LJ, Botez D. Comprehensive above-threshold analysis of antiresonant reflecting optical waveguide edge-emitting diode laser Ieee Journal of Quantum Electronics. 42: 589-599. DOI: 10.1109/Jqe.2006.874065  0.66
2006 Kanskar M, He Y, Cai J, Stiers E, Galstad C, Macomber SH, Tatavarti-Bharatam R, Botez D, Mawst LJ. 50% Efficient, > 5 W, distributed feedback broad area laser (975 nm) Conference On Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, Cleo/Qels 2006. DOI: 10.1109/CLEO.2006.4627602  0.637
2006 Gao X, Botez D, Knezevic I. X -valley leakage in GaAsAlGaAs quantum cascade lasers Applied Physics Letters. 89. DOI: 10.1063/1.2387485  0.447
2006 Li S, Xu D, Botez D. High power, single-mode operation from photonic-lattice semiconductor lasers with controllable lateral resonance Applied Physics Letters. 88: 91112. DOI: 10.1063/1.2180443  0.531
2006 Kanskar M, He Y, Cai J, Galstad C, MacOmber SH, Stiers E, Botez D, Mawst LJ. 53 wallplug efficiency 975nm distributed feedback broad area laser Electronics Letters. 42: 1455-1457. DOI: 10.1049/El:20062868  0.683
2005 Botez D. High-power, high brightness semiconductor lasers Proceedings of Spie. 5624: 203-212. DOI: 10.1117/12.579422  0.577
2005 Napartovich AP, Elkin NN, Sukharev AG, Troshchieva VN, Vysotsky DV, Nesnidal M, Stiers E, Mawst LJ, Botez D. Modeling of above-threshold single-mode operation of edge-emitting diode lasers Nusod '05 - Proceedings of the 5th International Conference On Numerical Simulation of Optoelectronic Devices. 2005: 37-38. DOI: 10.1109/NUSOD.2005.1518123  0.597
2005 Li S, Botez D. Design for high-power single-mode operation from 2-D surface-emitting ROW-DFB lasers Ieee Photonics Technology Letters. 17: 519-521. DOI: 10.1109/Lpt.2004.842388  0.491
2004 Tsvid G, D'Souza M, Botez D, Hawkins B, Khandekar A, Kuech T, Zory P. Towards intersubband quantum box lasers: Electron-beam lithography update Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures. 22: 3214-3216. DOI: 10.1116/1.1824055  0.758
2003 Li S, Witjaksono G, Macomber S, Botez D. Analysis of surface-emitting second-order distributed feedback lasers with central grating phaseshift Ieee Journal of Selected Topics in Quantum Electronics. 9: 1153-1165. DOI: 10.1109/Jstqe.2003.819467  0.475
2003 Lee J, Mawst L, Botez D. Improved-performance, InGaAs∕InGaAsP (=980 nm) asymmetric broad-waveguide diode lasers via waveguide-core doping Electronics Letters. 39: 1250. DOI: 10.1049/El:20030830  0.584
2003 Lee J, Mawst L, Botez D. MOCVD growth of asymmetric 980nm InGaAs/InGaAsP broad-waveguide diode lasers for high power applications Journal of Crystal Growth. 249: 100-105. DOI: 10.1016/S0022-0248(02)02110-3  0.723
2002 Botez D. Active photonic lattices: lasers for watt-range coherent-power generation Proceedings of Spie. 4905: 78-84. DOI: 10.1117/12.480988  0.58
2002 Lee J, Mawst L, Botez D. Asymmetric broad waveguide diode lasers (/spl lambda/ = 980 nm) of large equivalent transverse spot size and low temperature sensitivity Ieee Photonics Technology Letters. 14: 1046-1048. DOI: 10.1109/Lpt.2002.1021964  0.676
2002 Chang JC, Lee JJ, Al-Muhanna A, Mawst LJ, Botez D. Comprehensive above-threshold analysis of large-aperture (8–10 μm) antiresonant reflecting optical waveguide diode lasers Applied Physics Letters. 81: 4901-4903. DOI: 10.1063/1.1531830  0.645
2001 Witjaksono G, Botez D. Surface-emitting, single-lobe operation from second-order distributed-reflector lasers with central grating phaseshift Applied Physics Letters. 78: 4088-4090. DOI: 10.1063/1.1382633  0.834
2000 Ispasoiu RG, Fox AM, Botez D. Carrier transport mechanisms in high-power InGaAs-InGaAsP-InGaP strained quantum-well lasers Ieee Journal of Quantum Electronics. 36: 858-863. DOI: 10.1109/3.848359  0.439
2000 Chang CH, Earles T, Botez D. High CW power narrow-spectral width (<1.5 /spl Aring/) 980 nm broad-stripe distributed feedback diode lasers Electronics Letters. 36: 954-955. DOI: 10.1049/El:20000692  0.585
1999 Mirabedini A, Mawst L, Botez D, Marsland R. High reproducibility for deep-quantum-well resonant tunnelling diodes grown by metal organic chemical vapour deposition Electronics Letters. 35: 669. DOI: 10.1049/El:19990446  0.592
1998 Lopez JG, Kasraian M, Botez D. Surface-emitting complex-coupled second-order distributed-feedback lasers for high-power applications High-Power Lasers and Applications. 3284: 41-51. DOI: 10.1117/12.304465  0.519
1998 Yang H, Nesnidal M, Al-Muhanna A, Mawst L, Botez D, Vang T, Alvarez F, Johnson R. High-power single-mode simplified antiresonant reflecting optical waveguide (S-ARROW) distributed feedback semiconductor lasers Ieee Photonics Technology Letters. 10: 1079-1081. DOI: 10.1109/68.701508  0.541
1998 Nesnidal M, Mawst L, Botez D, Buus J. Distributed-feedback grating used as an array-mode selector in resonant antiguided diode laser arrays: effects of the mirror facet position with respect to the grating Ieee Photonics Technology Letters. 10: 507-509. DOI: 10.1109/68.662576  0.432
1998 Kasraian M, Lopez J, Botez D. Antiphase complex-coupled surface-emitting distributed feedback diode lasers with absorptive gratings Ieee Photonics Technology Letters. 10: 27-29. DOI: 10.1109/68.651090  0.509
1998 Levron D, Walter DK, Appelt S, Fitzgerald RJ, Kahn D, Korbly SE, Sauer KL, Happer W, Earles TL, Mawst LJ, Botez D, Harvey M, Dimarco L, Connolly JC, Möller HE, et al. Magnetic resonance imaging of hyperpolarized 129Xe produced by spin exchange with diode-laser pumped Cs Applied Physics Letters. 73: 2666-2668. DOI: 10.1063/1.122547  0.514
1998 Earles T, Mawst LJ, Botez D. 1.1 W continuous-wave, narrow spectral width (<1 Å) emission from broad-stripe, distributed-feedback diode lasers (λ=0.893 μm) Applied Physics Letters. 73: 2072-2074. DOI: 10.1063/1.122381  0.718
1998 Nesnidal MP, Earles T, Mawst LJ, Botez D, Buus J. 0.45 W diffraction-limited beam and single-frequency operation from antiguided phase-locked laser array with distributed feedback grating Applied Physics Letters. 73: 587-589. DOI: 10.1063/1.121864  0.63
1998 Lopez J, Kasraian M, Botez D. Surface-emitting, distributed-feedback diode lasers with uniform near-field intensity profile Applied Physics Letters. 73: 2266-2268. DOI: 10.1063/1.121697  0.564
1998 Wade JK, Mawst LJ, Botez D, Nabiev RF, Jansen M, Morris JA. 6.1 W continuous wave front-facet power from Al-free active-region (λ=805 nm) diode lasers Applied Physics Letters. 72: 4-6. DOI: 10.1063/1.120628  0.853
1998 Wade J, Mawst L, Botez D, Morris J. 8.8 W CW power from broad-waveguide Al-free active-region ( = 805 nm) diode lasers Electronics Letters. 34: 1100. DOI: 10.1049/El:19980775  0.841
1998 Bhattacharya A, Botez D, Nabiev RF. Effect of element width on above-threshold behaviour of antiguided diode laser arrays Electronics Letters. 34: 84-85. DOI: 10.1049/El:19980083  0.68
1998 Mawst L, Yang H, Nesnidal M, Al-Muhanna A, Botez D, Vang T, Alvarez F, Johnson R. High-power, single-mode, Al-free InGaAs(P)/InGaP/GaAs distributed feedback diode lasers Journal of Crystal Growth. 195: 609-616. DOI: 10.1016/S0022-0248(98)00564-8  0.683
1997 Nesnidal M, Mawst L, Botez D. Distributed-feedback grating used as a lateral-mode selector in phase-locked antiguided arrays Ieee Photonics Technology Letters. 9: 34-36. DOI: 10.1109/68.554162  0.383
1997 Al-Muhanna A, Mawst LJ, Botez D, Garbuzov DZ, Martinelli RU, Connolly JC. 14.3 W quasicontinuous wave front-facet power from broad-waveguide Al-free 970 nm diode lasers Applied Physics Letters. 71: 1142-1144. DOI: 10.1063/1.119847  0.726
1997 Wade JK, Mawst LJ, Botez D, Nabiev RF, Jansen M. 5 W continuous wave power, 0.81-μm-emitting, Al-free active-region diode lasers Applied Physics Letters. 71: 172-174. DOI: 10.1063/1.119528  0.852
1997 Mirabedini AR, Mawst LJ, Botez D, Marsland RA. High peak-current-density strained-layer In0.3Ga0.7As/Al0.8Ga0.2As resonant tunneling diodes grown by metal-organic chemical vapor deposition Applied Physics Letters. 70: 2867-2869. DOI: 10.1063/1.119027  0.526
1997 Wade JK, Mawst LJ, Botez D, Jansen M, Fang F, Nabiev RF. High continuous wave power, 0.8 μm-band, Al-free active-region diode lasers Applied Physics Letters. 70: 149-151. DOI: 10.1063/1.118343  0.82
1997 Botez D, Mawst L, Bhattacharya A, Lopez J, Li J, Kuech T, Iakovlev V, Suruceanu G, Caliman A, Syrbu A, Morris J. 6 W CW front-facet power from short-cavity (0.5 mm), 100 [micro sign]m stripe Al-free 0.98 [micro sign]m-emitting diode lasers Electronics Letters. 33: 2037. DOI: 10.1049/El:19971390  0.749
1997 Yang H, Mawst L, Nesnidal M, Lopez J, Bhattacharya A, Botez D. 10 W near-diffraction-limited peak pulsed power from Al-free, 0.98 [micro sign]m-emitting phase-locked antiguided arrays Electronics Letters. 33: 136. DOI: 10.1049/El:19970099  0.753
1997 Mawst L, Bhattacharya A, Nesnidal M, Lopez J, Botez D, Syrbu A, Yakovlev V, Suruceanu G, Mereutza A, Jansen M, Nabiev R. MOVPE-grown high CW power InGaAs/InGaAsP/InGaP diode lasers Journal of Crystal Growth. 170: 383-389. DOI: 10.1016/S0022-0248(96)00513-1  0.804
1996 Nesnidal M, Mawst L, Bhattacharya A, Botez D, DiMarco L, Connolly J, Abeles J. Single-frequency, single-spatial-mode ROW-DFB diode laser arrays Ieee Photonics Technology Letters. 8: 182-184. DOI: 10.1109/68.484234  0.747
1996 Mawst LJ, Bhattacharya A, Lopez J, Botez D, Garbuzov DZ, DeMarco L, Nabiev RF, Jansen M, Fang F, Nabiev RF. Erratum: ‘‘8 W continuous wave front‐facet power from broad‐waveguide Al‐free 980 nm diode lasers’’ [Appl. Phys. Lett. 69, 1532 (1996)] Applied Physics Letters. 69: 3437-3437. DOI: 10.1063/1.118163  0.7
1996 Kasraian M, Botez D. Metal-Grating-Outcoupled Surface-Emitting Distributed-Feedback Diode Lasers Applied Physics Letters. 69: 2795-2797. DOI: 10.1063/1.116846  0.537
1996 Bhattacharya A, Mawst L, Nesnidal M, Lopez J, Botez D. 0.4 W CW diffraction limited beam Al free 0.98 [micro sign]m wavelength three core ARROW-type diode lasers Electronics Letters. 32: 657. DOI: 10.1049/El:19960456  0.758
1995 Goltser IV, Mawst LJ, Botez D. Single-cladding antiresonant reflecting optical waveguide-type diode laser. Optics Letters. 20: 2219. PMID 19862303 DOI: 10.1364/Ol.20.002219  0.629
1995 Zmudzinski C, Botez D, Mawst LI, Bhattacharya A, Nesnidal M, Nabiev RF. Three-core ARROW-type diode laser: novel high-power, single-mode device, and effective master oscillator for flared antiguided MOPA's Ieee Journal of Selected Topics in Quantum Electronics. 1: 129-137. DOI: 10.1109/2944.401190  0.73
1995 Mawst LJ, Bhattacharya A, Nesnidal M, Lopez J, Botez D, Morris JA, Zory P. High continuous wave output power InGaAs/InGaAsP/InGaP diode lasers: Effect of substrate misorientation Applied Physics Letters. 67: 2901-2903. DOI: 10.1063/1.114836  0.852
1995 Kasraian M, Botez D. Single‐lobed far‐field radiation pattern from surface‐emitting complex‐coupled distributed‐feedback diode lasers Applied Physics Letters. 67: 2783-2785. DOI: 10.1063/1.114592  0.484
1995 Mawst LJ, Botez D, Nabiev RF, Zmudzinski C. Above‐threshold behavior of high‐power, single‐mode antiresonant reflecting optical waveguide diode lasers Applied Physics Letters. 66: 7-9. DOI: 10.1063/1.114152  0.678
1995 Bhattacharya A, Botez D, Nesnidal M, Lopez J, Mawst L. High power narrow beam singlemode ARROW-type InGaAs/InGaAsP/InGaP diode lasers Electronics Letters. 31: 1837-1838. DOI: 10.1049/El:19951233  0.643
1995 Mawst L, Bhattacharya A, Nesnidal M, Lopez J, Botez D, Morris J, Zory P. High CW output power and ‘wallplug’ efficiency Al-free InGaAs/InGaAsP/InGaP double quantum well diode lasers Electronics Letters. 31: 1153. DOI: 10.1049/El:19950812  0.841
1994 Botez D, Napartovich AP, Zmudzinski CA. Phase-locked arrays of antiguides: analytical theory II Ieee Journal of Quantum Electronics. 30: 975-980. DOI: 10.1109/3.348052  0.344
1994 Mawst LJ, Tu C, Zmudzinski C, Botez D, Martin R, Mazed M. Single‐frequency antiguided laser array with buried distributed feedback grating Journal of Applied Physics. 75: 7220-7223. DOI: 10.1063/1.356677  0.628
1994 Botez D, O'Brien S. 1.3 W CW diffraction-limited monolithically integrated master oscillator flared amplifier at 863 nm (Comment and Reply) Electronics Letters. 30: 1053-1054. DOI: 10.1049/El:19940731  0.382
1993 Nabiev RF, Iturbe-Castillo MD, Sanchez-Mondragon JJ, Onishchenko AI, Botez D. Nonlinear restrictions of Talbot-like spatial filters in semiconductor laser arrays. Applied Optics. 32: 4480-4. PMID 20830106  0.315
1993 Mawst LJ, Botez D, Zmudzinski C, Tu CA, Jansen M. Single-mode ARROW-type diode lasers Proceedings of Spie. 1850: 37-50. DOI: 10.1117/12.146921  0.658
1993 Nabiev RF, Yi X, Yeh P, Botez D. Self-stabilization of fundamental in-phase mode in resonant antiguided laser arrays Proceedings of Spie. 1850: 23-36. DOI: 10.1117/12.146912  0.442
1993 Zmudzinski C, Botez D, Mawst LJ, Tu CA. Coherent 1-W cw operation of large-aperture resonant arrays of antiguides Proceedings of Spie. 1850: 13-22. DOI: 10.1117/12.146904  0.694
1993 Mar A, Helkey R, Reynolds T, Bowers J, Botez D, Zmudzinski C, Tu C, Mawst L. Mode-locked multisegment resonant-optical-waveguide diode laser arrays Ieee Photonics Technology Letters. 5: 1355-1359. DOI: 10.1109/68.262539  0.69
1993 Botez D, Jansen M, Zmudzinski C, Mawst LJ, Hayashida P, Tu C, Nabiev RF. Flat‐phasefront fanout‐type power amplifier employing resonant‐optical‐waveguide structures Applied Physics Letters. 63: 3113-3115. DOI: 10.1063/1.110220  0.596
1993 Zmudzinski C, Botez D, Mawst LJ, Tu C, Frantz L. Coherent 1 W continuous wave operation of large‐aperture resonant arrays of antiguided diode lasers Applied Physics Letters. 62: 2914-2916. DOI: 10.1063/1.109195  0.693
1993 Jansen M, Botez D, Mawst LJ, Roth TJ, Yang JJ, Ou SS, Hayashida P, Dozal LA. Injection locking of leaky‐wave coupled resonant optical waveguide arrays Applied Physics Letters. 62: 547-549. DOI: 10.1063/1.108906  0.548
1992 Ou SS, Jansen M, Yang JJ, Sergant M, Mawst LJ, Botez D, Roth TJ, Hess CA, Tu C. High-performance surface-emitting lasers with dry-etched facets Proceedings of Spie. 1703: 143-153. DOI: 10.1117/12.138375  0.69
1992 Mawst L, Botez D, Zmudzinski C, Tu C. Design optimization of ARROW-type diode lasers Ieee Photonics Technology Letters. 4: 1204-1206. DOI: 10.1109/68.166943  0.655
1992 Mawst LJ, Botez D, Zmudzinski C, Tu C. Antiresonant reflecting optical waveguide‐type, single‐mode diode lasers Applied Physics Letters. 61: 503-505. DOI: 10.1063/1.108475  0.674
1992 Ou SS, Botez D, Mawst LJ, Jansen M, Sergant M, Roth TJ, Yang JJ. High‐power coherent surface‐emitting antiguided diode laser arrays Applied Physics Letters. 61: 627-629. DOI: 10.1063/1.107828  0.657
1992 Jansen M, Botez D, Mawst LJ, Roth TJ, Yang JJ, Hayashida P, Dozal L, Rozenbergs J. Injection locking of antiguided resonant optical waveguide arrays Applied Physics Letters. 60: 26-28. DOI: 10.1063/1.107355  0.619
1992 Mawst LJ, Botez D, Zmudzinski C, Jansen M, Tu C, Roth TJ, Yun J. Resonant self‐aligned‐stripe antiguided diode laser array Applied Physics Letters. 60: 668-670. DOI: 10.1063/1.106586  0.679
1992 Zmudzinski CA, Botez D, Mawst LJ. Simple description of laterally resonant, distributed‐feedback‐like modes of arrays of antiguides Applied Physics Letters. 60: 1049-1051. DOI: 10.1063/1.106440  0.571
1992 Mawst L, Botez D, Zmudzinski C, Tu C. 0.3 W CW single-spatial-mode operation from large-core arrow-type diode lasers Electronics Letters. 28: 1793. DOI: 10.1049/El:19921143  0.68
1992 Zmudzinski C, Mawst L, Botez D, Tu C, Wang C. 1 W diffraction-limited-beam operation of resonant-optical-waveguide diode laser arrays at 0.98 μm Electronics Letters. 28: 1543. DOI: 10.1049/El:19920980  0.69
1991 Mawst LJ, Botez D, Jansen M, Sergant M, Peterson G, Roth TJ. Leaky‐wave interarray coupling for coherent‐power scaling of phase‐locked diode‐laser arrays of antiguides Applied Physics Letters. 59: 1655-1657. DOI: 10.1063/1.106258  0.552
1991 Jansen M, Yang JJ, Ou SS, Sergant M, Mawst L, Rozenbergs J, Wilcox J, Botez D. Monolithic two‐dimensional surface‐emitting diode laser arrays mounted in the junction‐down configuration Applied Physics Letters. 59: 2663-2665. DOI: 10.1063/1.105932  0.634
1991 Mawst LJ, Botez D, Roth TJ, Peterson G, Rozenbergs J. cw high‐power diffraction‐limited‐beam operation from resonant optical waveguide arrays of diode lasers Applied Physics Letters. 58: 22-24. DOI: 10.1063/1.104425  0.642
1991 Mawst L, Botez D, Jansen M, Roth T, Tu C, Zmudzinski C. 0.5 W CW diffraction-limited-beam operation from high-efficiency resonant-optical-waveguide diode-laser arrays Electronics Letters. 27: 1586. DOI: 10.1049/El:19910993  0.65
1991 Mawst L, Botez D, Jansen M, Roth T, Rozenbergs J. 1.5 W diffraction-limited-beam operation from resonant-optical-waveguide (ROW) array Electronics Letters. 27: 369. DOI: 10.1049/El:19910233  0.622
1990 Mawst L, Botez D, Jansen M, Roth T, Yang J. Highly coherent, in-phase-mode operation of 20-element resonant arrays of antiguides Ieee Photonics Technology Letters. 2: 249-252. DOI: 10.1109/68.53252  0.584
1989 Botez D, Zinkiewicz LM, Roth TJ, Mawst LJ, Peterson G. Low-Threshold-Current-Density Vertical-Cavity Surface-Emitting AlGaAs/GaAs Diode Lasers Ieee Photonics Technology Letters. 1: 205-208. DOI: 10.1109/68.36043  0.475
1989 Botez D, Mawst LJ, Hayashida P, Roth TJ. High‐power, diffraction‐limited‐beam operation from interferometric, phase‐locked arrays of AlGaAs/GaAs diode lasers Journal of Applied Physics. 65: 3716-3718. DOI: 10.1063/1.342601  0.604
1989 Jansen M, Yang JJ, Ou SS, Botez D, Wilcox J, Mawst L. Diffraction‐limited operation from monolithically integrated diode laser array and self‐imaging (Talbot) cavity Applied Physics Letters. 55: 1949-1951. DOI: 10.1063/1.102153  0.669
1989 Mawst LJ, Botez D, Jansen M, Roth TJ, Peterson G. High‐power, narrow single‐lobe operation from 20‐element phase‐locked arrays of antiguides Applied Physics Letters. 55: 2060-2062. DOI: 10.1063/1.102105  0.614
1989 Wilcox JZ, Simmons WW, Botez D, Jansen M, Mawst LJ, Peterson G, Wilcox TJ, Yang JJ. Design considerations for diffraction coupled arrays with monolithically integrated self‐imaging cavities Applied Physics Letters. 54: 1848-1850. DOI: 10.1063/1.101255  0.568
1989 Zinkiewicz LM, Roth TJ, Mawst LJ, Tran D, Botez D. High-power vertical-cavity surface-emitting AlGaAs/GaAs diode lasers Applied Physics Letters. 54: 1959-1961. DOI: 10.1063/1.101184  0.681
1989 Botez D, Hayashida P, Mawst L, Roth T, Peterson G. Diffraction-limited in-phase-mode operation from uniform array of antiguides with enhanced interelement loss Electronics Letters. 25: 1282. DOI: 10.1049/El:19890858  0.591
1989 Mawst L, Botez D, Roth T, Simmons W, Peterson G, Jansen M, Wilcox J, Yang J. Phase-locked array of antiguided lasers with monolithic spatial filter Electronics Letters. 25: 365. DOI: 10.1049/El:19890253  0.569
1988 Botez D, Hayashida P, Mawst LJ, Roth TJ. Diffraction‐limited‐beam, high‐power operation fromX‐junction coupled phase‐locked arrays of AlGaAs/GaAs diode lasers Applied Physics Letters. 53: 1366-1368. DOI: 10.1063/1.99980  0.645
1988 Botez D, Mawst L, Hayashida P, Roth TJ, Anderson E. Stable, single‐(array)‐mode operation from phase‐locked, interferometric arrays of index‐guided AlGaAs/GaAs diode lasers Applied Physics Letters. 52: 266-268. DOI: 10.1063/1.99489  0.668
1988 Mawst LJ, Botez D, Roth TJ. High‐power, diffraction‐limited‐beam operation from diode‐laser phase‐locked arrays operating in coupled first‐order modes Applied Physics Letters. 53: 1236-1238. DOI: 10.1063/1.100024  0.558
1988 Botez D, Mawst L, Peterson G. Resonant leaky-wave coupling in linear arrays of antiguides Electronics Letters. 24: 1328. DOI: 10.1049/El:19880903  0.52
1988 Mawst L, Botez D, Roth T, Peterson G, Yang J. Diffraction-coupled, phase-locked arrays of antiguided, quantum-well lasers grown by metalorganic chemical vapour deposition Electronics Letters. 24: 958. DOI: 10.1049/El:19880652  0.621
1986 Botez D, Ackley DE. Phase-locked arrays of semiconductor diode lasers Ieee Circuits and Devices Magazine. 2: 8-17. DOI: 10.1109/MCD.1986.6311765  0.392
1985 Botez D. Laser diodes are power-packed: Single-mode laser diodes have a rosy future, both as individual sources of power up to 100 milliwatts and in arrays promising up to half a watt Ieee Spectrum. 22: 43-53. DOI: 10.1109/MSPEC.1985.6370493  0.449
1983 Botez D, Connolly J. IVB-1 phase-locked array of CSP-LOC lasers Ieee Transactions On Electron Devices. 30: 1591-1592. DOI: 10.1109/T-ED.1983.21381  0.346
1983 Botez D, Connolly JC, Ettenberg M, Gilbert DB, Hughes JJ. Reliability of constricted double‐heterojunction AlGaAs diode lasers Applied Physics Letters. 43: 137-139. DOI: 10.1063/1.94283  0.371
1982 Botez D, Connolly J. IIIA-1 terraced heterostructure large-optical-cavity AlGaAs lasers for single-mode CW operation high output power levels Ieee Transactions On Electron Devices. 29: 1671-1672. DOI: 10.1109/T-ED.1982.20953  0.445
1982 Botez D, Connolly JC, Gilbert DB, Harvey MG, Ettenberg M. High-power individually addressable monolithic array of constricted double heterojunction large-optical-cavity lasers Applied Physics Letters. 41: 1040-1042. DOI: 10.1063/1.93386  0.568
1981 Botez D, Connolly J, Gilbert D, Ettenberg M. IIIA-5 very-high-temperature operation in constricted double-heterojunction AlGaAs diode lasers Ieee Transactions On Electron Devices. 28: 1223-1223. DOI: 10.1109/T-ED.1981.20538  0.4
1979 Botez D. Optimal cavity design for low‐threshold‐current‐density operation of double‐heterojunction diode lasers Applied Physics Letters. 35: 57-60. DOI: 10.1063/1.90908  0.48
1978 Botez D. Singe‐mode cw operation of ’’double‐dovetail’’ constricted DH (AlGa)As diode lasers Applied Physics Letters. 33: 872-874. DOI: 10.1063/1.90196  0.57
1978 Botez D, Zory P. Constricted double-heterostructure (AlGa)As diode lasers Applied Physics Letters. 32: 261-263. DOI: 10.1063/1.90013  0.746
1977 Figueroa L, Botez D, Wang S. Analysis of Mode Broadening Due to Transient Heating of Optically Pumped Semiconductor Lasers Ieee Journal of Quantum Electronics. 13: 612-615. DOI: 10.1109/Jqe.1977.1069403  0.462
1977 Figueroa L, Botez D, Wang S. Broadening of the longitudinal modes due to transient heating in optically pumped semiconductor lasers Journal of Applied Physics. 48: 1995-1997. DOI: 10.1063/1.323907  0.468
1976 Botez D, Figueroa L, Wang S. Optically pumped GaAs-Ga1-xAlxAs half-ring laser fabricated by liquid-phase epitaxy over chemically etched channels Applied Physics Letters. 29: 502-504. DOI: 10.1063/1.89138  0.517
1975 Tseng C, Botez D, Wang S. Optical bends and rings fabricated by preferential etching Applied Physics Letters. 26: 699-701. DOI: 10.1063/1.88041  0.669
Show low-probability matches.