Year |
Citation |
Score |
2023 |
Dick T, Dwork C, Kearns M, Liu T, Roth A, Vietri G, Wu ZS. Reply to Sanchéz et al.: Multiplicity does not protect privacy. Proceedings of the National Academy of Sciences of the United States of America. 120: e2304263120. PMID 37094130 DOI: 10.1073/pnas.2304263120 |
0.448 |
|
2023 |
Dick T, Dwork C, Kearns M, Liu T, Roth A, Vietri G, Wu ZS. Confidence-ranked reconstruction of census microdata from published statistics. Proceedings of the National Academy of Sciences of the United States of America. 120: e2218605120. PMID 36800385 DOI: 10.1073/pnas.2218605120 |
0.505 |
|
2018 |
Berk R, Heidari H, Jabbari S, Kearns M, Roth A. Fairness in Criminal Justice Risk Assessments: The State of the Art Sociological Methods & Research. 4912411878253. DOI: 10.1177/0049124118782533 |
0.534 |
|
2016 |
Kearns M, Roth A, Wu ZS, Yaroslavtsev G. Private algorithms for the protected in social network search. Proceedings of the National Academy of Sciences of the United States of America. PMID 26755606 DOI: 10.1073/Pnas.1510612113 |
0.558 |
|
2016 |
Chen Y, Ghosh A, Kearns M, Roughgarden T, Vaughan JW. Mathematical foundations for social computing Communications of the Acm. 59: 102-108. DOI: 10.1145/2960403 |
0.578 |
|
2015 |
Amin K, Cummings R, Dworkin L, Kearns M, Roth A. Online learning and profit maximization from revealed preferences Proceedings of the National Conference On Artificial Intelligence. 2: 770-776. |
0.575 |
|
2014 |
Kearns M, Pai MM, Roth A, Ullman J. Mechanism design in large games: Incentives and privacy American Economic Review. 104: 431-435. DOI: 10.1257/Aer.104.5.431 |
0.551 |
|
2011 |
Brautbar M, Kearns M. A clustering coefficient network formation game Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 6982: 224-235. DOI: 10.1007/978-3-642-24829-0_21 |
0.689 |
|
2010 |
Chakraborty T, Judd S, Kearns M, Tan J. A behavioral study of bargaining in social networks Proceedings of the Acm Conference On Electronic Commerce. 243-251. DOI: 10.1145/1807342.1807382 |
0.563 |
|
2010 |
Ganchev K, Nevmyvaka Y, Kearns M, Vaughan JW. Censored exploration and the dark pool problem Communications of the Acm. 53: 99-107. DOI: 10.1145/1735223.1735247 |
0.62 |
|
2010 |
Brautbar M, Kearns M, Syed U. Private and third-party randomization in risk-sensitive equilibrium concepts Proceedings of the National Conference On Artificial Intelligence. 2: 723-728. |
0.693 |
|
2009 |
Kearns M, Judd S, Tan J, Wortman J. Behavioral experiments on biased voting in networks. Proceedings of the National Academy of Sciences of the United States of America. 106: 1347-52. PMID 19168630 DOI: 10.1073/Pnas.0808147106 |
0.559 |
|
2006 |
Kearns M, Suri S, Montfort N. An experimental study of the coloring problem on human subject networks. Science (New York, N.Y.). 313: 824-7. PMID 16902134 DOI: 10.1126/Science.1127207 |
0.6 |
|
2006 |
Isbell CL, Kearns M, Singh S, Shelton CR, Stone P, Kormann D. Cobot in LambdaMOO: An adaptive social statistics agent Autonomous Agents and Multi-Agent Systems. 13: 327-354. DOI: 10.1007/S10458-006-0005-Z |
0.329 |
|
2005 |
Kakade SM, Kearns M, Ortiz LE, Pemantle R, Suri S. Economic properties of social networks Advances in Neural Information Processing Systems. |
0.572 |
|
2002 |
Singh S, Litman D, Kearns M, Walker M. Optimizing dialogue management with reinforcement learning: experiments with the NJFun system Journal of Artificial Intelligence Research. 16: 105-133. DOI: 10.1613/Jair.859 |
0.326 |
|
2002 |
Kearns M, Singh S. Machine Learning. 49: 209-232. DOI: 10.1023/A:1017984413808 |
0.315 |
|
2002 |
Kearns M, Mansour Y, Ng AY. Machine Learning. 49: 193-208. DOI: 10.1023/A:1017932429737 |
0.325 |
|
2000 |
Kearns M, Ron D. Testing Problems with Sublearning Sample Complexity Journal of Computer and System Sciences. 61: 428-456. DOI: 10.1006/Jcss.1999.1656 |
0.31 |
|
1999 |
Kearns M, Mansour Y. On the Boosting Ability of Top–Down Decision Tree Learning Algorithms Journal of Computer and System Sciences. 58: 109-128. DOI: 10.1006/Jcss.1997.1543 |
0.32 |
|
1998 |
Kearns M. Efficient noise-tolerant learning from statistical queries Journal of the Acm. 45: 983-1006. DOI: 10.1145/293347.293351 |
0.356 |
|
1997 |
Freund Y, Kearns M, Ron D, Rubinfeld R, Schapire RE, Sellie L. Efficient Learning of Typical Finite Automata from Random Walks Information and Computation. 138: 23-48. DOI: 10.1006/Inco.1997.2648 |
0.379 |
|
1994 |
Kearns M, Li M, Valiant L. Learning Boolean formulas Journal of the Acm (Jacm). 41: 1298-1328. DOI: 10.1145/195613.195656 |
0.645 |
|
1994 |
Kearns M, Valiant L. Cryptographic limitations on learning Boolean formulae and finite automata Journal of the Acm (Jacm). 41: 67-95. DOI: 10.1145/174644.174647 |
0.663 |
|
1993 |
Kearns M, Li M. Learning in the Presence of Malicious Errors Siam Journal On Computing. 22: 807-837. DOI: 10.1137/0222052 |
0.338 |
|
1991 |
Haussler D, Kearns M, Littlestone N, Warmuth MK. Equivalence of models for polynomial learnability Information and Computation. 95: 129-161. DOI: 10.1016/0890-5401(91)90042-Z |
0.358 |
|
1989 |
Ehrenfeucht A, Haussler D, Kearns M, Valiant L. A general lower bound on the number of examples needed for learning Information and Computation. 82: 247-261. DOI: 10.1016/0890-5401(89)90002-3 |
0.614 |
|
Show low-probability matches. |