Jeffrey Skolnick - Publications

Affiliations: 
School of Biology, Center for the Study of Systems Biology Georgia Institute of Technology, Atlanta, GA 

274 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Davidson RB, Coletti M, Gao M, Piatkowski B, Sreedasyam A, Quadir F, Weston DJ, Schmutz J, Cheng J, Skolnick J, Parks JM, Sedova A. Predicted structural proteome of Sphagnum divinum and proteome-scale annotation. Bioinformatics (Oxford, England). PMID 37589594 DOI: 10.1093/bioinformatics/btad511  0.342
2022 Gao M, Nakajima An D, Skolnick J. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria. Elife. 11. PMID 36576775 DOI: 10.7554/eLife.82885  0.316
2022 Gao M, Nakajima An D, Parks JM, Skolnick J. AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nature Communications. 13: 1744. PMID 35365655 DOI: 10.1038/s41467-022-29394-2  0.36
2021 Skolnick J, Gao M, Zhou H, Singh S. AlphaFold 2: Why It Works and Its Implications for Understanding the Relationships of Protein Sequence, Structure, and Function. Journal of Chemical Information and Modeling. PMID 34586808 DOI: 10.1021/acs.jcim.1c01114  0.36
2021 Gao M, Skolnick J. A General Framework to Learn Tertiary Structure for Protein Sequence Characterization. Frontiers in Bioinformatics. 1. PMID 34308415 DOI: 10.3389/fbinf.2021.689960  0.32
2021 Zhou H, Cao H, Skolnick J. FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening. Journal of Chemical Information and Modeling. PMID 33724022 DOI: 10.1021/acs.jcim.0c01160  0.303
2020 Skolnick J, Gao M. The role of local versus nonlocal physicochemical restraints in determining protein native structure. Current Opinion in Structural Biology. 68: 1-8. PMID 33129066 DOI: 10.1016/j.sbi.2020.10.008  0.396
2020 Gao M, Skolnick J. A novel sequence alignment algorithm based on deep learning of the protein folding code. Bioinformatics (Oxford, England). PMID 32960943 DOI: 10.1093/bioinformatics/btaa810  0.313
2020 Sweeney-Jones AM, Gagaring K, Antonova-Koch J, Zhou H, Mojib N, Soapi K, Skolnick J, McNamara CW, Kubanek J. Antimalarial Peptide and Polyketide Natural Products from the Fijian Marine Cyanobacterium . Marine Drugs. 18. PMID 32197482 DOI: 10.3390/Md18030167  0.309
2019 Skolnick J, Zhou H, Gao M. On the possible origin of protein homochirality, structure, and biochemical function. Proceedings of the National Academy of Sciences of the United States of America. PMID 31822617 DOI: 10.1073/Pnas.1908241116  0.398
2019 Gao M, Zhou H, Skolnick J. DESTINI: A deep-learning approach to contact-driven protein structure prediction. Scientific Reports. 9: 3514. PMID 30837676 DOI: 10.1038/S41598-019-40314-1  0.469
2018 Zhou H, Cao H, Skolnick J. FINDSITE: A New Approach for Virtual Ligand Screening of Proteins and Virtual Target Screening of Biomolecules. Journal of Chemical Information and Modeling. PMID 30278128 DOI: 10.1021/Acs.Jcim.8B00309  0.425
2017 Srinivasan B, Tonddast-Navaei S, Skolnick J. Pocket detection and interaction-weighted ligand-similarity search yields novel high-affinity binders for Myocilin-OLF, a protein implicated in glaucoma. Bioorganic & Medicinal Chemistry Letters. PMID 28739043 DOI: 10.1016/J.Bmcl.2017.07.035  0.385
2016 Tonddast-Navaei S, Srinivasan B, Skolnick J. On the importance of composite protein multiple ligand interactions in protein pockets. Journal of Computational Chemistry. PMID 27864975 DOI: 10.1002/Jcc.24523  0.376
2016 Skolnick J, Zhou H. Why Is There a Glass Ceiling for Threading Based Protein Structure Prediction Methods? The Journal of Physical Chemistry. B. PMID 27748116 DOI: 10.1021/Acs.Jpcb.6B09517  0.503
2016 Skolnick J. Perspective: On the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules. The Journal of Chemical Physics. 145: 100901. PMID 27634243 DOI: 10.1063/1.4962258  0.311
2016 Srinivasan B, Zhou H, Mitra S, Skolnick J. Novel small molecule binders of human N-glycanase 1, a key player in the endoplasmic reticulum associated degradation pathway. Bioorganic & Medicinal Chemistry. PMID 27567076 DOI: 10.1016/J.Bmc.2016.08.019  0.366
2016 Zhou H, Gao M, Skolnick J. ENTPRISE: An Algorithm for Predicting Human Disease-Associated Amino Acid Substitutions from Sequence Entropy and Predicted Protein Structures. Plos One. 11: e0150965. PMID 26982818 DOI: 10.1371/Journal.Pone.0150965  0.399
2016 Skolnick J, Gao M, Zhou H. How special is the biochemical function of native proteins? F1000research. 5. PMID 26962440 DOI: 10.12688/F1000Research.7374.1  0.447
2015 Tonddast-Navaei S, Skolnick J. Are protein-protein interfaces special regions on a protein's surface? The Journal of Chemical Physics. 143: 243149. PMID 26723634 DOI: 10.1063/1.4937428  0.431
2015 Roy A, Srinivasan B, Skolnick J. PoLi: A Virtual Screening Pipeline Based on Template Pocket and Ligand Similarity. Journal of Chemical Information and Modeling. 55: 1757-70. PMID 26225536 DOI: 10.1021/Acs.Jcim.5B00232  0.405
2015 Zhou H, Gao M, Skolnick J. Comprehensive prediction of drug-protein interactions and side effects for the human proteome. Scientific Reports. 5: 11090. PMID 26057345 DOI: 10.1038/Srep11090  0.31
2015 Gao M, Zhou H, Skolnick J. Insights into Disease-Associated Mutations in the Human Proteome through Protein Structural Analysis. Structure (London, England : 1993). PMID 26027735 DOI: 10.1016/J.Str.2015.03.028  0.337
2015 Lee HS, Jo S, Mukherjee S, Park SJ, Skolnick J, Lee J, Im W. GS-align for glycan structure alignment and similarity measurement. Bioinformatics (Oxford, England). PMID 25857669 DOI: 10.1093/Bioinformatics/Btv202  0.444
2015 Skolnick J, Gao M, Roy A, Srinivasan B, Zhou H. Implications of the small number of distinct ligand binding pockets in proteins for drug discovery, evolution and biochemical function. Bioorganic & Medicinal Chemistry Letters. 25: 1163-70. PMID 25690787 DOI: 10.1016/J.Bmcl.2015.01.059  0.4
2015 Roy A, Skolnick J. LIGSIFT: an open-source tool for ligand structural alignment and virtual screening. Bioinformatics (Oxford, England). 31: 539-44. PMID 25336501 DOI: 10.1093/Bioinformatics/Btu692  0.349
2014 Ando T, Skolnick J. Sliding of proteins non-specifically bound to DNA: Brownian dynamics studies with coarse-grained protein and DNA models. Plos Computational Biology. 10: e1003990. PMID 25504215 DOI: 10.1371/Journal.Pcbi.1003990  0.33
2014 Skolnick J, Gao M, Zhou H. On the role of physics and evolution in dictating protein structure and function. Israel Journal of Chemistry. 54: 1176-1188. PMID 25484448 DOI: 10.1002/Ijch.201400013  0.468
2014 Srinivasan B, Zhou H, Kubanek J, Skolnick J. Experimental validation of FINDSITE(comb) virtual ligand screening results for eight proteins yields novel nanomolar and micromolar binders. Journal of Cheminformatics. 6: 16. PMID 24936211 DOI: 10.1186/1758-2946-6-16  0.372
2014 Khoury GA, Liwo A, Khatib F, Zhou H, Chopra G, Bacardit J, Bortot LO, Faccioli RA, Deng X, He Y, Krupa P, Li J, Mozolewska MA, Sieradzan AK, Smadbeck J, ... ... Skolnick J, et al. WeFold: a coopetition for protein structure prediction. Proteins. 82: 1850-68. PMID 24677212 DOI: 10.1002/Prot.24538  0.444
2013 Gao M, Skolnick J. A comprehensive survey of small-molecule binding pockets in proteins. Plos Computational Biology. 9: e1003302. PMID 24204237 DOI: 10.1371/Journal.Pcbi.1003302  0.435
2013 Ando T, Chow E, Skolnick J. Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions: algorithm and limitations. The Journal of Chemical Physics. 139: 121922. PMID 24089734 DOI: 10.1063/1.4817660  0.304
2013 Skolnick J, Gao M. Interplay of physics and evolution in the likely origin of protein biochemical function. Proceedings of the National Academy of Sciences of the United States of America. 110: 9344-9. PMID 23690621 DOI: 10.1073/Pnas.1300011110  0.496
2013 Zhang Y, Skolnick J. Segment assembly, structure alignment and iterative simulation in protein structure prediction. Bmc Biology. 11: 44. PMID 23587325 DOI: 10.1186/1741-7007-11-44  0.577
2013 Jo S, Lee HS, Skolnick J, Im W. Restricted N-glycan conformational space in the PDB and its implication in glycan structure modeling. Plos Computational Biology. 9: e1002946. PMID 23516343 DOI: 10.1371/Journal.Pcbi.1002946  0.464
2013 Skolnick J, Zhou H, Gao M. Are predicted protein structures of any value for binding site prediction and virtual ligand screening? Current Opinion in Structural Biology. 23: 191-7. PMID 23415854 DOI: 10.1016/J.Sbi.2013.01.009  0.383
2013 Gao M, Skolnick J. APoc: large-scale identification of similar protein pockets. Bioinformatics (Oxford, England). 29: 597-604. PMID 23335017 DOI: 10.1093/Bioinformatics/Btt024  0.445
2013 Zhou H, Skolnick J. FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach. Journal of Chemical Information and Modeling. 53: 230-40. PMID 23240691 DOI: 10.1021/Ci300510N  0.357
2013 Jo S, sun Lee H, Li G, Skolnick J, Im W. N-Glycan Structure Modeling and in Silico Glycosylation: Template-Based Structure Prediction of Carbohydrate Structures of Glycoconjugates Biophysical Journal. 104: 230a. DOI: 10.1016/J.Bpj.2012.11.1297  0.312
2012 Ando T, Chow E, Saad Y, Skolnick J. Krylov subspace methods for computing hydrodynamic interactions in brownian dynamics simulations. The Journal of Chemical Physics. 137: 064106. PMID 22897254 DOI: 10.1063/1.4742347  0.303
2012 Zhou H, Skolnick J. FINDSITE(X): a structure-based, small molecule virtual screening approach with application to all identified human GPCRs. Molecular Pharmaceutics. 9: 1775-84. PMID 22574683 DOI: 10.1021/Mp3000716  0.452
2012 Gao M, Skolnick J. The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation. Proceedings of the National Academy of Sciences of the United States of America. 109: 3784-9. PMID 22355140 DOI: 10.1073/Pnas.1117768109  0.429
2012 Skolnick J, Zhou H, Brylinski M. Further evidence for the likely completeness of the library of solved single domain protein structures. The Journal of Physical Chemistry. B. 116: 6654-64. PMID 22272723 DOI: 10.1021/Jp211052J  0.461
2012 Zhou H, Skolnick J. Template-based protein structure modeling using TASSER(VMT.). Proteins. 80: 352-61. PMID 22105797 DOI: 10.1002/Prot.23183  0.42
2012 Gao M, Skolnick J. On the Structural Space of Protein-Protein Interfaces Biophysical Journal. 102: 608a. DOI: 10.1016/J.Bpj.2011.11.3315  0.474
2011 Zhou H, Skolnick J. GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophysical Journal. 101: 2043-52. PMID 22004759 DOI: 10.1016/J.Bpj.2011.09.012  0.372
2011 Brylinski M, Gao M, Skolnick J. Why not consider a spherical protein? Implications of backbone hydrogen bonding for protein structure and function. Physical Chemistry Chemical Physics : Pccp. 13: 17044-55. PMID 21655593 DOI: 10.1039/C1Cp21140D  0.481
2011 Gao M, Skolnick J. New benchmark metrics for protein-protein docking methods. Proteins. 79: 1623-34. PMID 21365685 DOI: 10.1002/Prot.22987  0.399
2011 Brylinski M, Skolnick J. FINDSITE-metal: integrating evolutionary information and machine learning for structure-based metal-binding site prediction at the proteome level. Proteins. 79: 735-51. PMID 21287609 DOI: 10.1002/Prot.22913  0.35
2011 Brylinski M, Lee SY, Zhou H, Skolnick J. The utility of geometrical and chemical restraint information extracted from predicted ligand-binding sites in protein structure refinement. Journal of Structural Biology. 173: 558-69. PMID 20850544 DOI: 10.1016/J.Jsb.2010.09.009  0.42
2010 Gao M, Skolnick J. Structural space of protein-protein interfaces is degenerate, close to complete, and highly connected. Proceedings of the National Academy of Sciences of the United States of America. 107: 22517-22. PMID 21149688 DOI: 10.1073/Pnas.1012820107  0.467
2010 Lee SY, Skolnick J. TASSER_WT: a protein structure prediction algorithm with accurate predicted contact restraints for difficult protein targets. Biophysical Journal. 99: 3066-75. PMID 21044605 DOI: 10.1016/J.Bpj.2010.09.007  0.438
2010 Brylinski M, Skolnick J. Comprehensive structural and functional characterization of the human kinome by protein structure modeling and ligand virtual screening. Journal of Chemical Information and Modeling. 50: 1839-54. PMID 20853887 DOI: 10.1021/Ci100235N  0.413
2010 Pandit SB, Skolnick J. TASSER_low-zsc: an approach to improve structure prediction using low z-score-ranked templates. Proteins. 78: 2769-80. PMID 20635423 DOI: 10.1002/Prot.22791  0.403
2010 Gao M, Skolnick J. iAlign: a method for the structural comparison of protein-protein interfaces. Bioinformatics (Oxford, England). 26: 2259-65. PMID 20624782 DOI: 10.1093/Bioinformatics/Btq404  0.472
2010 Zhou H, Skolnick J. Improving threading algorithms for remote homology modeling by combining fragment and template comparisons. Proteins. 78: 2041-8. PMID 20455261 DOI: 10.1002/Prot.22717  0.412
2010 Pandit SB, Brylinski M, Zhou H, Gao M, Arakaki AK, Skolnick J. PSiFR: an integrated resource for prediction of protein structure and function. Bioinformatics (Oxford, England). 26: 687-8. PMID 20080513 DOI: 10.1093/Bioinformatics/Btq006  0.45
2010 Brylinski M, Skolnick J. Q-Dock(LHM): Low-resolution refinement for ligand comparative modeling. Journal of Computational Chemistry. 31: 1093-105. PMID 19827144 DOI: 10.1002/Jcc.21395  0.412
2010 Brylinski M, Skolnick J. Comparison of structure-based and threading-based approaches to protein functional annotation. Proteins. 78: 118-34. PMID 19731377 DOI: 10.1002/Prot.22566  0.438
2010 Skolnick J, Kolinski A. Simulations of the folding of a globular protein. Science (New York, N.Y.). 250: 1121-5. PMID 17840193 DOI: 10.1126/Science.250.4984.1121  0.483
2010 Bhushan Pandit S, Zhou H, Skolnick J. Tasser-Based Protein Structure Prediction Introduction to Protein Structure Prediction: Methods and Algorithms. 219-242. DOI: 10.1002/9780470882207.ch10  0.352
2009 Gao M, Skolnick J. A threading-based method for the prediction of DNA-binding proteins with application to the human genome. Plos Computational Biology. 5: e1000567. PMID 19911048 DOI: 10.1371/Journal.Pcbi.1000567  0.403
2009 Skolnick J, Arakaki AK, Lee SY, Brylinski M. The continuity of protein structure space is an intrinsic property of proteins. Proceedings of the National Academy of Sciences of the United States of America. 106: 15690-5. PMID 19805219 DOI: 10.1073/Pnas.0907683106  0.472
2009 Zhou H, Pandit SB, Skolnick J. Performance of the Pro-sp3-TASSER server in CASP8. Proteins. 77: 123-7. PMID 19639638 DOI: 10.1002/Prot.22501  0.352
2009 Brylinski M, Skolnick J. FINDSITE: a threading-based approach to ligand homology modeling. Plos Computational Biology. 5: e1000405. PMID 19503616 DOI: 10.1371/Journal.Pcbi.1000405  0.389
2009 Gao M, Skolnick J. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions. Plos Computational Biology. 5: e1000341. PMID 19343221 DOI: 10.1371/Journal.Pcbi.1000341  0.365
2009 Skolnick J, Brylinski M. FINDSITE: a combined evolution/structure-based approach to protein function prediction. Briefings in Bioinformatics. 10: 378-91. PMID 19324930 DOI: 10.1093/bib/bbp017  0.327
2009 Zhou H, Skolnick J. Protein structure prediction by pro-Sp3-TASSER. Biophysical Journal. 96: 2119-27. PMID 19289038 DOI: 10.1016/J.Bpj.2008.12.3898  0.444
2009 Skolnick J, Brylinski M, Lee SY. Reply to Zimmerman et al.: The space of single domain protein structures is continuous and highly connected Proceedings of the National Academy of Sciences of the United States of America. 106: E138. DOI: 10.1073/Pnas.0912660107  0.398
2009 Gao M, Skolnick J. In Silico Study Of Nonspecific DNA-protein Encounter Complexes Biophysical Journal. 96: 64a. DOI: 10.1016/J.Bpj.2008.12.230  0.341
2008 Pandit SB, Skolnick J. Fr-TM-align: a new protein structural alignment method based on fragment alignments and the TM-score. Bmc Bioinformatics. 9: 531. PMID 19077267 DOI: 10.1186/1471-2105-9-531  0.457
2008 Jagielska A, Wroblewska L, Skolnick J. Protein model refinement using an optimized physics-based all-atom force field. Proceedings of the National Academy of Sciences of the United States of America. 105: 8268-73. PMID 18550813 DOI: 10.1073/Pnas.0800054105  0.498
2008 Gao M, Skolnick J. DBD-Hunter: a knowledge-based method for the prediction of DNA-protein interactions. Nucleic Acids Research. 36: 3978-92. PMID 18515839 DOI: 10.1093/Nar/Gkn332  0.394
2008 Lee SY, Skolnick J. Benchmarking of TASSER_2.0: an improved protein structure prediction algorithm with more accurate predicted contact restraints. Biophysical Journal. 95: 1956-64. PMID 18487301 DOI: 10.1529/Biophysj.108.129759  0.456
2008 Brylinski M, Skolnick J. Q-Dock: Low-resolution flexible ligand docking with pocket-specific threading restraints. Journal of Computational Chemistry. 29: 1574-88. PMID 18293308 DOI: 10.1002/Jcc.20917  0.395
2008 Somarelli JA, Lee SY, Skolnick J, Herrera RJ. Structure-based classification of 45 FK506-binding proteins. Proteins. 72: 197-208. PMID 18214965 DOI: 10.1002/Prot.21908  0.458
2008 Rotkiewicz P, Skolnick J. Fast procedure for reconstruction of full-atom protein models from reduced representations. Journal of Computational Chemistry. 29: 1460-5. PMID 18196502 DOI: 10.1002/Jcc.20906  0.473
2008 Wroblewska L, Jagielska A, Skolnick J. Development of a physics-based force field for the scoring and refinement of protein models. Biophysical Journal. 94: 3227-40. PMID 18178653 DOI: 10.1529/Biophysj.107.121947  0.413
2008 Brylinski M, Skolnick J. A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proceedings of the National Academy of Sciences of the United States of America. 105: 129-34. PMID 18165317 DOI: 10.1073/Pnas.0707684105  0.405
2008 Zhou H, Skolnick J. Protein model quality assessment prediction by combining fragment comparisons and a consensus C(alpha) contact potential. Proteins. 71: 1211-8. PMID 18004783 DOI: 10.1002/Prot.21813  0.392
2008 Chen H, Skolnick J. M-TASSER: an algorithm for protein quaternary structure prediction. Biophysical Journal. 94: 918-28. PMID 17905848 DOI: 10.1529/Biophysj.107.114280  0.51
2008 Brylinski M, Skolnick J. What is the relationship between the global structures of apo and holo proteins? Proteins. 70: 363-77. PMID 17680687 DOI: 10.1002/Prot.21510  0.42
2007 Zhou H, Pandit SB, Lee SY, Borreguero J, Chen H, Wroblewska L, Skolnick J. Analysis of TASSER-based CASP7 protein structure prediction results. Proteins. 69: 90-7. PMID 17705276 DOI: 10.1002/Prot.21649  0.431
2007 Zhou H, Skolnick J. Ab initio protein structure prediction using chunk-TASSER. Biophysical Journal. 93: 1510-8. PMID 17496016 DOI: 10.1529/Biophysj.107.109959  0.512
2007 Wu S, Skolnick J, Zhang Y. Ab initio modeling of small proteins by iterative TASSER simulations. Bmc Biology. 5: 17. PMID 17488521 DOI: 10.1186/1741-7007-5-17  0.544
2007 Lee SY, Skolnick J. Development and benchmarking of TASSER(iter) for the iterative improvement of protein structure predictions. Proteins. 68: 39-47. PMID 17469193 DOI: 10.1002/Prot.21440  0.403
2007 Borreguero JM, Skolnick J. Benchmarking of TASSER in the ab initio limit. Proteins. 68: 48-56. PMID 17444524 DOI: 10.1002/Prot.21392  0.49
2007 Wroblewska L, Skolnick J. Can a physics-based, all-atom potential find a protein's native structure among misfolded structures? I. Large scale AMBER benchmarking. Journal of Computational Chemistry. 28: 2059-66. PMID 17407093 DOI: 10.1002/Jcc.20720  0.466
2007 Jagielska A, Skolnick J. Origin of intrinsic 3(10)-helix versus strand stability in homopolypeptides and its implications for the accuracy of the Amber force field. Journal of Computational Chemistry. 28: 1648-57. PMID 17342701 DOI: 10.1002/Jcc.20616  0.392
2007 Yang JS, Chen WW, Skolnick J, Shakhnovich EI. All-atom ab initio folding of a diverse set of proteins. Structure (London, England : 1993). 15: 53-63. PMID 17223532 DOI: 10.1016/J.Str.2006.11.010  0.485
2007 Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality Proteins: Structure, Function, and Bioinformatics. 68: 1020-1020. DOI: 10.1002/Prot.21643  0.43
2007 Skolnick J, Kolinski A. Monte Carlo Approaches to the Protein Folding Problem Advances in Chemical Physics. 105: 203-242. DOI: 10.1002/9780470141649.Ch7  0.366
2006 Arakaki AK, Tian W, Skolnick J. High precision multi-genome scale reannotation of enzyme function by EFICAz. Bmc Genomics. 7: 315. PMID 17166279 DOI: 10.1186/1471-2164-7-315  0.488
2006 Pandit SB, Zhang Y, Skolnick J. TASSER-Lite: an automated tool for protein comparative modeling. Biophysical Journal. 91: 4180-90. PMID 16963505 DOI: 10.1529/Biophysj.106.084293  0.532
2006 Szilágyi A, Skolnick J. Efficient prediction of nucleic acid binding function from low-resolution protein structures. Journal of Molecular Biology. 358: 922-33. PMID 16551468 DOI: 10.1016/J.Jmb.2006.02.053  0.479
2006 Skolnick J. In quest of an empirical potential for protein structure prediction. Current Opinion in Structural Biology. 16: 166-71. PMID 16524716 DOI: 10.1016/J.Sbi.2006.02.004  0.484
2006 Zhang Y, Devries ME, Skolnick J. Structure modeling of all identified G protein-coupled receptors in the human genome. Plos Computational Biology. 2: e13. PMID 16485037 DOI: 10.1371/Journal.Pcbi.0020013  0.506
2006 Zhang Y, Hubner IA, Arakaki AK, Shakhnovich E, Skolnick J. On the origin and highly likely completeness of single-domain protein structures. Proceedings of the National Academy of Sciences of the United States of America. 103: 2605-10. PMID 16478803 DOI: 10.1073/Pnas.0509379103  0.555
2006 Grimm V, Zhang Y, Skolnick J. Benchmarking of dimeric threading and structure refinement. Proteins. 63: 457-65. PMID 16463265 DOI: 10.1002/Prot.20878  0.535
2006 Lee SY, Zhang Y, Skolnick J. TASSER-based refinement of NMR structures. Proteins. 63: 451-6. PMID 16456861 DOI: 10.1002/Prot.20902  0.405
2006 Zhang Y, DeVries ME, Skolnick J. Correction: Structure Modeling of All Identified G Protein–Coupled Receptors in the Human Genome Plos Computational Biology. 2. DOI: 10.1371/Journal.Pcbi.0020029  0.345
2005 Szilágyi A, Grimm V, Arakaki AK, Skolnick J. Prediction of physical protein-protein interactions. Physical Biology. 2: S1-16. PMID 16204844 DOI: 10.1088/1478-3975/2/2/S01  0.439
2005 Zhang Y, Arakaki AK, Skolnick J. TASSER: an automated method for the prediction of protein tertiary structures in CASP6. Proteins. 61: 91-8. PMID 16187349 DOI: 10.1002/Prot.20724  0.462
2005 Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research. 33: 2302-9. PMID 15849316 DOI: 10.1093/Nar/Gki524  0.548
2005 Skolnick J. Putting the pathway back into protein folding. Proceedings of the National Academy of Sciences of the United States of America. 102: 2265-6. PMID 15703287 DOI: 10.1073/Pnas.0500128102  0.476
2005 Zhang Y, Skolnick J. The protein structure prediction problem could be solved using the current PDB library. Proceedings of the National Academy of Sciences of the United States of America. 102: 1029-34. PMID 15653774 DOI: 10.1073/Pnas.0407152101  0.55
2005 Bindewald E, Skolnick J. A scoring function for docking ligands to low-resolution protein structures. Journal of Computational Chemistry. 26: 374-83. PMID 15651033 DOI: 10.1002/Jcc.20175  0.431
2005 Skolnick J, Kolinski A, Brooks CL, Godzik A, Rey A. A method for predicting protein structure from sequence. Current Biology : Cb. 3: 414-23. PMID 15335708 DOI: 10.1016/0960-9822(93)90348-R  0.481
2004 Tian W, Arakaki AK, Skolnick J. EFICAz: a comprehensive approach for accurate genome-scale enzyme function inference. Nucleic Acids Research. 32: 6226-39. PMID 15576349 DOI: 10.1093/Nar/Gkh956  0.503
2004 Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality Proteins: Structure, Function and Genetics. 57: 702-710. PMID 15476259 DOI: 10.1002/Prot.20264  0.479
2004 Zhang Y, Skolnick J. Tertiary structure predictions on a comprehensive benchmark of medium to large size proteins Biophysical Journal. 87: 2647-2655. PMID 15454459 DOI: 10.1529/Biophysj.104.045385  0.562
2004 Betancourt MR, Skolnick J. Local propensities and statistical potentials of backbone dihedral angles in proteins Journal of Molecular Biology. 342: 635-649. PMID 15327961 DOI: 10.1016/J.Jmb.2004.06.091  0.747
2004 Li W, Zhang Y, Skolnick J. Application of sparse NMR restraints to large-scale protein structure prediction Biophysical Journal. 87: 1241-1248. PMID 15298926 DOI: 10.1529/Biophysj.104.044750  0.532
2004 Skolnick J, Kihara D, Zhang Y. Development and large scale benchmark testing of the PROSPECTOR_3 threading algorithm Proteins: Structure, Function and Genetics. 56: 502-518. PMID 15229883 DOI: 10.1002/Prot.20106  0.494
2004 Zhang Y, Skolnick J. Automated structure prediction of weakly homologous proteins on a genomic scale Proceedings of the National Academy of Sciences of the United States of America. 101: 7594-7599. PMID 15126668 DOI: 10.1073/Pnas.0305695101  0.553
2004 Kihara D, Skolnick J. Microbial Genomes Have over 72% Structure Assignment by the Threading Algorithm PROSPECTOR_Q Proteins: Structure, Function and Genetics. 55: 464-473. PMID 15048836 DOI: 10.1002/Prot.20044  0.386
2004 Zhang Y, Skolnick J. SPICKER: A clustering approach to identify near-native protein folds Journal of Computational Chemistry. 25: 865-871. PMID 15011258 DOI: 10.1002/Jcc.20011  0.513
2004 Arakaki AK, Zhang Y, Skolnick J. Large-scale assessment of the utility of low-resolution protein structures for biochemical function assignment. Bioinformatics (Oxford, England). 20: 1087-96. PMID 14764543 DOI: 10.1093/Bioinformatics/Bth044  0.49
2004 Kolinski A, Skolnick J. Reduced models of proteins and their applications Polymer. 45: 511-524. DOI: 10.1016/J.Polymer.2003.10.064  0.494
2003 Boniecki M, Rotkiewicz P, Skolnick J, Kolinski A. Protein fragment reconstruction using various modeling techniques Journal of Computer-Aided Molecular Design. 17: 725-738. PMID 15072433 DOI: 10.1023/B:Jcam.0000017486.83645.A0  0.407
2003 Lu H, Skolnick J. Application of Statistical Potentials to Protein Structure Refinement from Low Resolution Ab Initio Models Biopolymers. 70: 575-584. PMID 14648767 DOI: 10.1002/Bip.10537  0.49
2003 Haliloglu T, Kolinski A, Skolnick J. Use of Residual Dipolar Couplings as Restraints in Ab Initio Protein Structure Prediction Biopolymers. 70: 548-562. PMID 14648765 DOI: 10.1002/Bip.10511  0.493
2003 Kihara D, Skolnick J. The PDB is a covering set of small protein structures Journal of Molecular Biology. 334: 793-802. PMID 14636603 DOI: 10.1016/J.Jmb.2003.10.027  0.483
2003 Kolinski A, Klein P, Romiszowski P, Skolnick J. Unfolding of Globular Proteins: Monte Carlo Dynamics of a Realistic Reduced Model Biophysical Journal. 85: 3271-3278. PMID 14581227 DOI: 10.1016/S0006-3495(03)74745-6  0.473
2003 Skolnick J, Zhang Y, Arakaki AK, Kolinski A, Boniecki M, Szilágyi A, Kihara D. TOUCHSTONE: a unified approach to protein structure prediction. Proteins. 53: 469-79. PMID 14579335 DOI: 10.1002/Prot.10551  0.468
2003 Tian W, Skolnick J. How well is enzyme function conserved as a function of pairwise sequence identity? Journal of Molecular Biology. 333: 863-882. PMID 14568541 DOI: 10.1016/J.Jmb.2003.08.057  0.5
2003 Li W, Zhang Y, Kihara D, Huang YJ, Zheng D, Montelione GT, Kolinski A, Skolnick J. TOUCHSTONEX: Protein structure prediction with sparse NMR data Proteins: Structure, Function and Genetics. 53: 290-306. PMID 14517980 DOI: 10.1002/Prot.10499  0.533
2003 Zhang Y, Kolinski A, Skolnick J. TOUCHSTONE II: A new approach to ab initio protein structure prediction Biophysical Journal. 85: 1145-1164. PMID 12885659 DOI: 10.1016/S0006-3495(03)74551-2  0.544
2003 Kolinski A, Gront D, Pokarowski P, Skolnick J. A simple lattice model that exhibits a protein-like cooperative all-or-none folding transition Biopolymers. 69: 399-405. PMID 12833266 DOI: 10.1002/Bip.10385  0.459
2003 Lu L, Arakaki AK, Lu H, Skolnick J. Multimeric threading-based prediction of protein-protein interactions on a genomic scale: application to the Saccharomyces cerevisiae proteome. Genome Research. 13: 1146-54. PMID 12799350 DOI: 10.1101/Gr.1145203  0.452
2003 Lu H, Lu L, Skolnick J. Development of unified statistical potentials describing protein-protein interactions Biophysical Journal. 84: 1895-1901. PMID 12609891 DOI: 10.1016/S0006-3495(03)74997-2  0.453
2003 Pokarowski P, Kolinski A, Skolnick J. A minimal physically realistic protein-like lattice model: Designing an energy landscape that ensures all-or-none folding to a unique native state Biophysical Journal. 84: 1518-1526. PMID 12609858 DOI: 10.1016/S0006-3495(03)74964-9  0.435
2002 Fetrow JS, Giammona A, Kolinski A, Skolnick J. The protein folding problem: A biophysical enigma Current Pharmaceutical Biotechnology. 3: 329-347. PMID 12463416 DOI: 10.2174/1389201023378120  0.445
2002 Viñals J, Kolinski A, Skolnick J. Numerical study of the entropy loss of dimerization and the folding thermodynamics of the GCN4 leucine zipper Biophysical Journal. 83: 2801-2811. PMID 12414712 DOI: 10.1016/S0006-3495(02)75289-2  0.394
2002 Lu L, Lu H, Skolnick J. Multiprospector: An algorithm for the prediction of protein-protein interactions by multimeric threading Proteins: Structure, Function and Genetics. 49: 350-364. PMID 12360525 DOI: 10.1002/Prot.10222  0.484
2002 Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: Parallel hyperbolic Monte Carlo sampling of protein folding Proteins: Structure, Function and Genetics. 48: 192-201. PMID 12112688 DOI: 10.1002/Prot.10141  0.485
2002 Kihara D, Zhang Y, Lu H, Kolinski A, Skolnick J. Ab initio protein structure prediction on a genomic scale: Application to the Mycoplasma genitalium genome Proceedings of the National Academy of Sciences of the United States of America. 99: 5993-5998. PMID 11959918 DOI: 10.1073/Pnas.092135699  0.552
2002 Sikorski A, Kolinski A, Skolnick J. Computer simulations of protein folding with a small number of distance restraints. Acta Biochimica Polonica. 49: 683-692. DOI: 10.18388/Abp.2002_3777  0.469
2002 Skolnick J, Kolinski A. A unified approach to the prediction of protein structure and function Advances in Chemical Physics. 120: 131-192. DOI: 10.1002/0471224421.Ch4  0.44
2001 Skolnick J, Kolinski A, Kihara D, Betancourt M, Rotkiewicz P, Boniecki M. Ab initio protein structure prediction via a combination of threading, lattice folding, clustering, and structure refinement Proteins: Structure, Function and Genetics. 45: 149-156. PMID 11835492 DOI: 10.1002/Prot.1172  0.782
2001 Di Gennaro JA, Siew N, Hoffman BT, Zhang L, Skolnick J, Neilson LI, Fetrow JS. Enhanced functional annotation of protein sequences via the use of structural descriptors Journal of Structural Biology. 134: 232-245. PMID 11551182 DOI: 10.1006/Jsbi.2001.4391  0.443
2001 Betancourt MR, Skolnick J. Universal similarity measure for comparing protein structures Biopolymers. 59: 305-309. PMID 11514933 DOI: 10.1002/1097-0282(20011015)59:5<305::Aid-Bip1027>3.0.Co;2-6  0.772
2001 Kihara D, Lu H, Kolinski A, Skolnick J. TOUCHSTONE: An ab initio protein structure prediction method that uses threading-based tertiary restraints Proceedings of the National Academy of Sciences of the United States of America. 98: 10125-10130. PMID 11504922 DOI: 10.1073/Pnas.181328398  0.521
2001 Lu H, Skolnick J. A distance-dependent atomic knowledge-based potential for improved protein structure selection Proteins: Structure, Function and Genetics. 44: 223-232. PMID 11455595 DOI: 10.1002/Prot.1087  0.446
2001 Kolinski A, Betancourt MR, Kihara D, Rotkiewicz P, Skolnick J. Generalized comparative modeling (GENECOMP): A combination of sequence comparison, threading, and lattice modeling for protein structure prediction and refinement Proteins: Structure, Function and Genetics. 44: 133-149. PMID 11391776 DOI: 10.1002/Prot.1080  0.78
2001 Bukhman YV, Skolnick J. BioMolQuest: Integrated database-based retrieval of protein structural and functional information Bioinformatics. 17: 468-478. PMID 11331242 DOI: 10.1093/Bioinformatics/17.5.468  0.332
2001 Fetrow JS, Siew N, Di Gennaro JA, Martinez-Yamout M, Dyson HJ, Skolnick J. Genomic-scale comparison of sequence- and structure-based methods of function prediction: Does structure provide additional insight? Protein Science. 10: 1005-1014. PMID 11316881 DOI: 10.1110/Ps.49201  0.393
2001 Skolnick J, Kihara D. Defrosting the frozen approximation: PROSPECTOR - A new approach to threading Proteins: Structure, Function and Genetics. 42: 319-331. PMID 11151004 DOI: 10.1002/1097-0134(20010215)42:3<319::Aid-Prot30>3.0.Co;2-A  0.416
2001 Skolnick J, Kolinski A. Computational studies of protein folding Computing in Science and Engineering. 3: 40-X. DOI: 10.1109/Mcise.2001.947107  0.467
2001 Zhang Y, Skolnick J. Parallel-hat tempering: A Monte Carlo search scheme for the identification of low-energy structures Journal of Chemical Physics. 115: 5027-5032. DOI: 10.1063/1.1396672  0.418
2001 Gront D, Kolinski A, Skolnick J. A new combination of replica exchange Monte Carlo and histogram analysis for protein folding and thermodynamics Journal of Chemical Physics. 115: 1569-1574. DOI: 10.1063/1.1381062  0.446
2001 Betancourt MR, Skolnick J. Finding the Needle in a Haystack: Educing Native Folds from Ambiguous Ab Initio Protein Structure Predictions Journal of Computational Chemistry. 22: 339-353. DOI: 10.1002/1096-987X(200102)22:3<339::Aid-Jcc1006>3.0.Co;2-R  0.76
2000 Reva BA, Finkelstein AV, Skolnick J. Derivation and testing residue-residue mean-force potentials for use in protein structure recognition. Methods in Molecular Biology (Clifton, N.J.). 143: 155-74. PMID 11084906 DOI: 10.1385/1-59259-368-2:155  0.405
2000 Ortiz AR, Skolnick J. Sequence evolution and the mechanism of protein folding Biophysical Journal. 79: 1787-1799. PMID 11023886 DOI: 10.1016/S0006-3495(00)76430-7  0.453
2000 Feig M, Rotkiewicz P, Kolinski A, Skolnick J, Brooks CL. Accurate reconstruction of all-atom protein representations from side-chain-based low-resolution models. Proteins. 41: 86-97. PMID 10944396 DOI: 10.1002/1097-0134(20001001)41:1<86::Aid-Prot110>3.0.Co;2-Y  0.396
2000 Skolnick J, Fetrow JS, Kolinski A. Structural genomics and its importance for gene function analysis Nature Biotechnology. 18: 283-287. PMID 10700142 DOI: 10.1038/73723  0.465
2000 Sikorski A, Kolinski A, Skolnick J. Computer simulations of the properties of the α2, α2C, and α2D de novo designed helical proteins Proteins: Structure, Function and Genetics. 38: 17-28. PMID 10651035 DOI: 10.1002/(Sici)1097-0134(20000101)38:1<17::Aid-Prot3>3.0.Co;2-V  0.41
2000 Skolnick J, Kolinski A, Ortiz A. Derivation of protein-specific pair potentials based on weak sequence fragment similarity Proteins: Structure, Function and Genetics. 38: 3-16. PMID 10651034 DOI: 10.1002/(Sici)1097-0134(20000101)38:1<3::Aid-Prot2>3.0.Co;2-S  0.445
2000 Skolnick J, Fetrow JS. From genes to protein structure and function: Novel applications of computational approaches in the genomic era Trends in Biotechnology. 18: 34-39. PMID 10631780 DOI: 10.1016/S0167-7799(99)01398-0  0.43
2000 Kolinski A, Rotkiewicz P, Ilkowski B, Skolnick J. Protein Folding: Flexible Lattice Models Progress of Theoretical Physics Supplement. 138: 292-300. DOI: 10.1143/Ptps.138.292  0.477
2000 Gront D, Kolinski A, Skolnick J. Comparison of three Monte Carlo conformational search strategies for a proteinlike homopolymer model: folding thermodynamics and identification of low-energy structures Journal of Chemical Physics. 113: 5065-5071. DOI: 10.1063/1.1289533  0.381
2000 Simmerling C, Lee MR, Ortiz AR, Kolinski A, Skolnick J, Kollman PA. Combining MONSSTER and LES/PME to predict protein structure from amino acid sequence: Application to the small protein CMTI-1 Journal of the American Chemical Society. 122: 8392-8402. DOI: 10.1021/Ja993119K  0.515
2000 Skolnick J, Kollinski A, Kihara D, Rotkiewicz P, Ilkowski B. Prediction of protein structure and function on a genomic scale Journal of Molecular Graphics and Modelling. 18: 555. DOI: 10.1016/S1093-3263(00)80131-X  0.397
2000 Ilkowski B, Skolnick J, Kolinski A. Helix-coil and beta sheet-coil transitions in a simplified, yet realistic protein model Macromolecular Theory and Simulations. 9: 523-533. DOI: 10.1002/1521-3919(20001101)9:8<523::Aid-Mats523>3.0.Co;2-I  0.46
1999 Kolinski A, Rotkiewicz P, Ilkowski B, Skolnick J. A method for the improvement of threading-based protein models Proteins: Structure, Function and Genetics. 37: 592-610. PMID 10651275 DOI: 10.1002/(Sici)1097-0134(19991201)37:4<592::Aid-Prot10>3.0.Co;2-2  0.494
1999 Kolinski A, Ilkowski B, Skolnick J. Dynamics and thermodynamics of β-hairpin assembly: Insights from various simulation techniques Biophysical Journal. 77: 2942-2952. PMID 10585918 DOI: 10.1016/S0006-3495(99)77127-4  0.444
1999 Ortiz AR, Kolinski A, Rotkiewicz P, Ilkowski B, Skolnick J. Ab initio folding of proteins using restraints derived from evolutionary information Proteins: Structure, Function and Genetics. 37: 177-185. PMID 10526366 DOI: 10.1002/(Sici)1097-0134(1999)37:3+<177::Aid-Prot22>3.0.Co;2-E  0.467
1999 Fetrow JS, Siew N, Skolnick J. Structure-based functional motif identifies a potential disulfide oxidoreductase active site in the serine/threonine protein phosphatase-1 subfamily Faseb Journal. 13: 1866-1874. PMID 10506591 DOI: 10.1096/Fasebj.13.13.1866  0.367
1999 Mohanty D, Kolinski A, Skolnick J. De novo simulations of the folding thermodynamics of the GCN4 leucine zipper Biophysical Journal. 77: 54-69. PMID 10388740 DOI: 10.1016/S0006-3495(99)76872-4  0.388
1999 Mohanty D, Dominy BN, Kolinski A, Brooks CL, Skolnick J. Correlation between knowledge-based and detailed atomic potentials: Application to the unfolding of the GCN4 leucine zipper Proteins: Structure, Function and Genetics. 35: 447-452. PMID 10382672 DOI: 10.1002/(Sici)1097-0134(19990601)35:4<447::Aid-Prot8>3.0.Co;2-O  0.418
1999 Zhang B, Rychlewski L, Pawłowski K, Fetrow JS, Skolnick J, Godzik A. From fold predictions to function predictions: Automation of functional site conservation analysis for functional genome predictions Protein Science. 8: 1104-1115. PMID 10338021 DOI: 10.1110/Ps.8.5.1104  0.452
1999 Reva BA, Skolnick J, Finkelstein AV. Averaging interaction energies over homologs improves protein fold recognition in gapless threading. Proteins. 35: 353-9. PMID 10328270 DOI: 10.1002/(Sici)1097-0134(19990515)35:3<353::Aid-Prot9>3.0.Co;2-E  0.452
1999 Zhang L, Godzik A, Skolnick J, Fetrow JS. Functional analysis of the Escherichia coli genome for members of the alpha/beta hydrolase family. Folding & Design. 3: 535-48. PMID 9889164 DOI: 10.1016/S1359-0278(98)00069-8  0.405
1999 Skolnick J, Kolinski A, Ortiz AR. Reduced protein models and their application to the protein folding problem. Journal of Biomolecular Structure & Dynamics. 16: 381-96. PMID 9833676 DOI: 10.1080/07391102.1998.10508255  0.48
1999 Fetrow JS, Godzik A, Skolnick J. Functional analysis of the Escherichia coli genome using the sequence-to-structure-to-function paradigm: identification of proteins exhibiting the glutaredoxin/thioredoxin disulfide oxidoreductase activity. Journal of Molecular Biology. 282: 703-11. PMID 9743619 DOI: 10.1006/Jmbi.1998.2061  0.415
1999 Skolnick J, Kolinski A, Ortiz AR. Chapter 11 Application of reduced models to protein structure prediction Theoretical and Computational Chemistry. 8: 397-440. DOI: 10.1016/S1380-7323(99)80086-7  0.455
1999 Skolnick J, Kolinski A, Mohanty D. De novo predictions of the quaternary structure of leucine zippers and other coiled coils International Journal of Quantum Chemistry. 75: 165-176. DOI: 10.1002/(Sici)1097-461X(1999)75:3<165::Aid-Qua6>3.0.Co;2-Q  0.456
1998 Kolinski A, Skolnick J. Assembly of protein structure from sparse experimental data: an efficient Monte Carlo model. Proteins. 32: 475-94. PMID 9726417 DOI: 10.1002/(Sici)1097-0134(19980901)32:4<475::Aid-Prot6>3.0.Co;2-F  0.511
1998 Fetrow JS, Skolnick J. Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases. Journal of Molecular Biology. 281: 949-68. PMID 9719646 DOI: 10.1006/Jmbi.1998.1993  0.423
1998 Sikorski A, Kolinski A, Skolnick J. Computer simulations of de novo designed helical proteins. Biophysical Journal. 75: 92-105. PMID 9649370 DOI: 10.1016/S0006-3495(98)77497-1  0.432
1998 Zhang LI, Skolnick J. What should the Z-score of native protein structures be? Protein Science. 7: 1201-1207. PMID 9605325 DOI: 10.1002/Pro.5560070515  0.407
1998 Keasar C, Tobi D, Elber R, Skolnick J. Coupling the folding of homologous proteins. Proceedings of the National Academy of Sciences of the United States of America. 95: 5880-3. PMID 9600887 DOI: 10.1073/Pnas.95.11.5880  0.467
1998 Reva BA, Finkelstein AV, Skolnick J. What is the probability of a chance prediction of a protein structure with an rmsd of 6 A? Folding & Design. 3: 141-7. PMID 9565758 DOI: 10.1016/S1359-0278(98)00019-4  0.505
1998 Ortiz AR, Kolinski A, Skolnick J. Tertiary structure prediction of the KIX domain of CBP using Monte Carlo simulations driven by restraints derived from multiple sequence alignments. Proteins. 30: 287-94. PMID 9517544 DOI: 10.1002/(Sici)1097-0134(19980215)30:3<287::Aid-Prot8>3.0.Co;2-H  0.473
1998 Ortiz AR, Kolinski A, Skolnick J. Fold assembly of small proteins using monte carlo simulations driven by restraints derived from multiple sequence alignments. Journal of Molecular Biology. 277: 419-48. PMID 9514747 DOI: 10.1006/Jmbi.1997.1595  0.486
1998 Zhang L, Skolnick J. How do potentials derived from structural databases relate to "true" potentials? Protein Science : a Publication of the Protein Society. 7: 112-22. PMID 9514266 DOI: 10.1002/Pro.5560070112  0.454
1998 Ortiz AR, Kolinski A, Skolnick J. Nativelike topology assembly of small proteins using predicted restraints in Monte Carlo folding simulations. Proceedings of the National Academy of Sciences of the United States of America. 95: 1020-5. PMID 9448278 DOI: 10.1073/Pnas.95.3.1020  0.509
1998 Hu WP, Kolinski A, Skolnick J. Improved method for prediction of protein backbone U-turn positions and major secondary structural elements between U-turns. Proteins. 29: 443-60. PMID 9408942 DOI: 10.1002/(Sici)1097-0134(199712)29:4<443::Aid-Prot5>3.0.Co;2-9  0.472
1998 Kolinski A, Galazka W, Skolnick J. Monte Carlo studies of the thermodynamics and kinetics of reduced protein models: Application to small helical, β, and α/β proteins The Journal of Chemical Physics. 108: 2608-2617. DOI: 10.1063/1.475646  0.454
1998 Kolinski A, Jaroszewski L, Rotkiewicz P, Skolnick J. An Efficient Monte Carlo Model of Protein Chains. Modeling the Short-Range Correlations between Side Group Centers of Mass The Journal of Physical Chemistry B. 102: 4628-4637. DOI: 10.1021/Jp973371J  0.484
1998 Witte K, Skolnick J, Wong CH. A synthetic retrotransition (Backward reading) sequence of the right- handed three-helix bundle domain (10-53) of protein a shows similarity in confomation as predicted by computation Journal of the American Chemical Society. 120: 13042-13045. DOI: 10.1021/Ja982203H  0.441
1997 Reva BA, Finkelstein AV, Sanner M, Olson AJ, Skolnick J. Recognition of protein structure on coarse lattices with residue-residue energy functions. Protein Engineering. 10: 1123-30. PMID 9488137 DOI: 10.1093/Protein/10.10.1123  0.385
1997 Keasar C, Elber R, Skolnick J. Simultaneous and coupled energy optimization of homologous proteins: a new tool for structure prediction. Folding & Design. 2: 247-59. PMID 9269565 DOI: 10.1016/S1359-0278(97)00033-3  0.449
1997 Hu WP, Godzik A, Skolnick J. Sequence-structure specificity--how does an inverse folding approach work? Protein Engineering. 10: 317-31. PMID 9194156 DOI: 10.1093/Protein/10.4.317  0.459
1997 Skolnick J, Jaroszewski L, Kolinski A, Godzik A. Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Science : a Publication of the Protein Society. 6: 676-88. PMID 9070450 DOI: 10.1002/Pro.5560060317  0.422
1997 Kolinski A, Skolnick J, Godzik A, Hu WP. A method for the prediction of surface "U"-turns and transglobular connections in small proteins. Proteins. 27: 290-308. PMID 9061792 DOI: 10.1002/(Sici)1097-0134(199702)27:2<290::Aid-Prot14>3.0.Co;2-H  0.465
1997 Olszewski KA, Kolinski A, Skolnick J. Does a backwardly read protein sequence have a unique native state? Protein Engineering. 9: 5-14. PMID 9053902 DOI: 10.1093/Protein/9.1.5  0.481
1997 Skolnick J, Kolinski A, Ortiz AR. MONSSTER: a method for folding globular proteins with a small number of distance restraints. Journal of Molecular Biology. 265: 217-41. PMID 9020984 DOI: 10.1006/Jmbi.1996.0720  0.525
1997 Kolinski A, Galazka W, Skolnick J. On the origin of the cooperativity of protein folding: implications from model simulations. Proteins. 26: 271-87. PMID 8953649 DOI: 10.1002/(Sici)1097-0134(199611)26:3<271::Aid-Prot4>3.0.Co;2-H  0.441
1997 DeBolt SE, Skolnick J. Evaluation of atomic level mean force potentials via inverse folding and inverse refinement of protein structures: atomic burial position and pairwise non-bonded interactions. Protein Engineering. 9: 637-55. PMID 8875641 DOI: 10.1093/Protein/9.8.637  0.447
1997 Koliński A, Skolnick J. High coordination lattice models of protein structure, dynamics and thermodynamics. Acta Biochimica Polonica. 44: 389-422. DOI: 10.18388/Abp.1997_4393  0.507
1997 Reva BA, Finkelstein AV, Sanner M, Olson AJ, Skolnick J. Recognition of protein structure on coarse lattices with residue- residue energy functions Protein Engineering Design and Selection. 10: 1123-1130. DOI: 10.1093/protein/10.10.1123  0.323
1997 Kolinski A, Skolnick J. Determinants of secondary structure of polypeptide chains: Interplay between short range and burial interactions The Journal of Chemical Physics. 107: 953-964. DOI: 10.1063/1.474448  0.488
1997 Milik M, Kolinski A, Skolnick J. Algorithm for rapid reconstruction of protein backbone from alpha carbon coordinates Journal of Computational Chemistry. 18: 80-85. DOI: 10.1002/(Sici)1096-987X(19970115)18:1<80::Aid-Jcc8>3.0.Co;2-W  0.389
1996 Hirst JD, Vieth M, Skolnick J, Brooks CL. Predicting leucine zipper structures from sequence. Protein Engineering. 9: 657-62. PMID 8875642 DOI: 10.1093/Protein/9.8.657  0.427
1996 Olszewski KA, Kolinski A, Skolnick J. Folding simulations and computer redesign of protein A three-helix bundle motifs. Proteins. 25: 286-99. PMID 8844865 DOI: 10.1002/(Sici)1097-0134(199607)25:3<286::Aid-Prot2>3.0.Co;2-E  0.431
1996 Vieth M, Kolinski A, Skolnick J. Method for predicting the state of association of discretized protein models. Application to leucine zippers. Biochemistry. 35: 955-67. PMID 8547278 DOI: 10.1021/Bi9520702  0.437
1996 Godzik A, Koliński A, Skolnick J. Are proteins ideal mixtures of amino acids? Analysis of energy parameter sets. Protein Science : a Publication of the Protein Society. 4: 2107-17. PMID 8535247 DOI: 10.1002/Pro.5560041016  0.383
1996 Milik M, Skolnick J. A Monte Carlo model of fd and Pf1 coat proteins in lipid membranes. Biophysical Journal. 69: 1382-6. PMID 8534808 DOI: 10.1016/S0006-3495(95)80007-X  0.388
1995 Godzik A, Skolnick J. Flexible algorithm for direct multiple alignment of protein structures and sequences. Computer Applications in the Biosciences : Cabios. 10: 587-96. PMID 7704657 DOI: 10.1093/Bioinformatics/10.6.587  0.45
1995 Vieth M, Kolinski A, Brooks CL, Skolnick J. Prediction of quaternary structure of coiled coils. Application to mutants of the GCN4 leucine zipper. Journal of Molecular Biology. 251: 448-67. PMID 7650742 DOI: 10.1006/Jmbi.1995.0447  0.455
1995 Milik M, Kolinski A, Skolnick J. Neural network system for the evaluation of side-chain packing in protein structures. Protein Engineering. 8: 225-36. PMID 7479684 DOI: 10.1093/Protein/8.3.225  0.39
1995 Kolinski A, Milik M, Rycombel J, Skolnick J. A reduced model of short range interactions in polypeptide chains The Journal of Chemical Physics. 103: 4312-4323. DOI: 10.1063/1.470670  0.493
1995 Kolinski A, Galazka W, Skolnick J. Computer design of idealized β‐motifs The Journal of Chemical Physics. 103: 10286-10297. DOI: 10.1063/1.469930  0.443
1994 Godzik A, Skolnick J, Kolinski A. Regularities in interaction patterns of globular proteins. Protein Engineering. 6: 801-10. PMID 8309927 DOI: 10.1093/Protein/6.8.801  0.466
1994 Kolinski A, Skolnick J. Monte Carlo simulations of protein folding. II. Application to protein A, ROP, and crambin. Proteins. 18: 353-66. PMID 8208727 DOI: 10.1002/Prot.340180406  0.512
1994 Kolinski A, Skolnick J. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins. 18: 338-52. PMID 8208726 DOI: 10.1002/Prot.340180405  0.475
1994 Vieth M, Kolinski A, Brooks CL, Skolnick J. Prediction of the folding pathways and structure of the GCN4 leucine zipper. Journal of Molecular Biology. 237: 361-7. PMID 8151697 DOI: 10.1006/Jmbi.1994.1239  0.466
1994 Rey A, Skolnick J. Computer simulation of the folding of coiled coils The Journal of Chemical Physics. 100: 2267-2276. DOI: 10.1063/1.466525  0.444
1993 Rey A, Skolnick J. Computer modeling and folding of four-helix bundles. Proteins. 16: 8-28. PMID 8497487 DOI: 10.1002/Prot.340160103  0.456
1993 Skolnick J, Kolinski A, Godzik A. From independent modules to molten globules: observations on the nature of protein folding intermediates. Proceedings of the National Academy of Sciences of the United States of America. 90: 2099-100. PMID 8460114 DOI: 10.1073/Pnas.90.6.2099  0.468
1993 Milik M, Skolnick J. Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins. 15: 10-25. PMID 8451235 DOI: 10.1002/Prot.340150104  0.349
1993 Godzik A, Kolinski A, Skolnick J. De novo and inverse folding predictions of protein structure and dynamics. Journal of Computer-Aided Molecular Design. 7: 397-438. PMID 8229093 DOI: 10.1007/Bf02337559  0.486
1993 Godzik A, Skolnick J. Sequence-structure matching in globular proteins: application to supersecondary and tertiary structure determination. Proceedings of the National Academy of Sciences of the United States of America. 89: 12098-102. PMID 1465445 DOI: 10.1073/Pnas.89.24.12098  0.447
1993 Kolinski A, Godzik A, Skolnick J. A general method for the prediction of the three dimensional structure and folding pathway of globular proteins: Application to designed helical proteins The Journal of Chemical Physics. 98: 7420-7433. DOI: 10.1063/1.464706  0.511
1993 Levine YK, Kolinski A, Skolnick J. A lattice dynamics study of a Langmuir monolayer of monounsaturated fatty acids The Journal of Chemical Physics. 98: 7581-7587. DOI: 10.1063/1.464698  0.335
1993 Godzik A, Kolinski A, Skolnick J. Lattice representations of globular proteins: How good are they? Journal of Computational Chemistry. 14: 1194-1202. DOI: 10.1002/Jcc.540141009  0.419
1992 Godzik A, Skolnick J, Kolinski A. Simulations of the folding pathway of triose phosphate isomerase-type alpha/beta barrel proteins. Proceedings of the National Academy of Sciences of the United States of America. 89: 2629-33. PMID 1557367 DOI: 10.1073/Pnas.89.7.2629  0.425
1992 Godzik A, Kolinski A, Skolnick J. Topology fingerprint approach to the inverse protein folding problem. Journal of Molecular Biology. 227: 227-38. PMID 1522587 DOI: 10.1016/0022-2836(92)90693-E  0.478
1992 Milik M, Skolnick J. Spontaneous insertion of polypeptide chains into membranes: a Monte Carlo model. Proceedings of the National Academy of Sciences of the United States of America. 89: 9391-5. PMID 1409646 DOI: 10.1073/Pnas.89.20.9391  0.387
1992 Kolinski A, Skolnick J. Discretized model of proteins. I. Monte Carlo study of cooperativity in homopolypeptides The Journal of Chemical Physics. 97: 9412-9426. DOI: 10.1063/1.463317  0.48
1992 Rey A, Kolinski A, Skolnick J, Levine YK. Effect of double bonds on the dynamics of hydrocarbon chains The Journal of Chemical Physics. 97: 1240-1249. DOI: 10.1063/1.463250  0.308
1992 Rey A, Skolnick J. Efficient algorithm for the reconstruction of a protein backbone from the ?-carbon coordinates Journal of Computational Chemistry. 13: 443-456. DOI: 10.1002/Jcc.540130407  0.382
1991 Skolnick J, Kolinski A. Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure and dynamics. Journal of Molecular Biology. 221: 499-531. PMID 1920430 DOI: 10.1016/0022-2836(91)80070-B  0.465
1991 Levine YK, Kolinski A, Skolnick J. Monte Carlo dynamics study of motions incis‐unsaturated hydrocarbon chains The Journal of Chemical Physics. 95: 3826-3834. DOI: 10.1063/1.460782  0.305
1991 Kolinski A, Milik M, Skolnick J. Static and dynamic properties of a new lattice model of polypeptide chains The Journal of Chemical Physics. 94: 3978-3985. DOI: 10.1063/1.460675  0.397
1991 Ngai KL, Skolnick J. Correspondence between the coupling model predictions and computer simulations: diffusion of a probe polymer in a matrix having different degrees of polymerization Macromolecules. 24: 1561-1566. DOI: 10.1021/Ma00007A018  0.321
1991 Rey A, Skolnick J. Comparison of lattice Monte Carlo dynamics and Brownian dynamics folding pathways of α-helical hairpins Chemical Physics. 158: 199-219. DOI: 10.1016/0301-0104(91)87067-6  0.355
1990 Skolnick J, Kolinski A. Computer simulations of globular protein folding and tertiary structure. Annual Review of Physical Chemistry. 40: 207-35. PMID 2688673 DOI: 10.1146/Annurev.Pc.40.100189.001231  0.497
1990 Sikorski A, Skolnick J. Dynamic Monte Carlo simulations of globular protein folding. Model studies of in vivo assembly of four helix bundles and four member beta-barrels. Journal of Molecular Biology. 215: 183-98. PMID 2398497 DOI: 10.1016/S0022-2836(05)80103-2  0.42
1990 Sikorski A, Skolnick J. Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways. II. Alpha-helical motifs. Journal of Molecular Biology. 212: 819-36. PMID 2329584 DOI: 10.1016/0022-2836(90)90238-H  0.428
1990 Skolnick J, Kolinski A. Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways. I. Six-member, Greek key beta-barrel proteins. Journal of Molecular Biology. 212: 787-817. PMID 2329583 DOI: 10.1016/0022-2836(90)90237-G  0.408
1990 Milik M, Kolinski A, Skolnick J. Monte Carlo dynamics of a dense system of chain molecules constrained to lie near an interface. A simplified membrane model The Journal of Chemical Physics. 93: 4440-4446. DOI: 10.1063/1.458726  0.335
1989 Skolnick J, Kolinski A, Yaris R. Dynamic Monte Carlo study of the folding of a six-stranded Greek key globular protein. Proceedings of the National Academy of Sciences of the United States of America. 86: 1229-33. PMID 2919171 DOI: 10.1073/Pnas.86.4.1229  0.476
1989 Sikorski A, Skolnick J. Monte Carlo studies on equilibrium globular protein folding. III. The four helix bundle. Biopolymers. 28: 1097-113. PMID 2730943 DOI: 10.1002/Bip.360280605  0.462
1989 Skolnick J, Kolinski A, Yaris R. Monte Carlo studies on equilibrium globular protein folding. II. Beta-barrel globular protein models. Biopolymers. 28: 1059-95. PMID 2730942 DOI: 10.1002/Bip.360280604  0.424
1989 Sikorski A, Skolnick J. Monte Carlo simulation of equilibrium globular protein folding: alpha-helical bundles with long loops. Proceedings of the National Academy of Sciences of the United States of America. 86: 2668-72. PMID 2704742 DOI: 10.1073/Pnas.86.8.2668  0.451
1989 SKOLNICK J, YARIS R, KOLINSKI A. PHENOMENOLOGICAL THEORY OF POLYMER MELT DYNAMICS International Journal of Modern Physics B. 3: 33-64. DOI: 10.1142/S0217979289000038  0.306
1988 Skolnick J, Kolinski A, Yaris R. Monte Carlo simulations of the folding of beta-barrel globular proteins. Proceedings of the National Academy of Sciences of the United States of America. 85: 5057-61. PMID 3393530 DOI: 10.1073/Pnas.85.14.5057  0.436
1988 Holtzer A, Skolnick J. Application of the augmented theory of alpha-helix-to-random-coil transitions of two-chain, coiled coils to extant data on synthetic, tropomyosin-analog peptides. Biopolymers. 27: 87-96. PMID 3342280 DOI: 10.1002/Bip.360270107  0.4
1988 Skolnick J, Yaris R, Kolinski A. Phenomenological theory of the dynamics of polymer melts. I. Analytic treatment of self‐diffusion The Journal of Chemical Physics. 88: 1407-1417. DOI: 10.1063/1.454212  0.303
1987 Skolnick J. Possible role of helix-coil transitions in the microscopic mechanism of muscle contraction. Biophysical Journal. 51: 227-43. PMID 3828457 DOI: 10.1016/S0006-3495(87)83328-3  0.358
1987 Duffy P, Skolnick J, Holtzer A. A theoretical model simulating the anomalous concentration dependence of the equilibrium thermal unfolding curve of noncrosslinked tropomyosin. Biochemical and Biophysical Research Communications. 141: 394-8. PMID 3801006 DOI: 10.1016/S0006-291X(86)80382-5  0.34
1987 Skolnick J, Holtzer A. Alpha-helix-to-random-coil transitions of two-chain, coiled coils: a theoretical model for the "pretransition" in cysteine-190-cross-linked tropomyosin. Biochemistry. 25: 6192-202. PMID 3790515 DOI: 10.1021/Bi00368A054  0.337
1987 Kolinski A, Skolnick J, Yaris R. Monte Carlo studies on equilibrium globular protein folding. I. Homopolymeric lattice models of beta-barrel proteins. Biopolymers. 26: 937-62. PMID 3607251 DOI: 10.1002/Bip.360260613  0.42
1987 Kolinski A, Skolnick J, Yaris R. Monte Carlo studies on the long time dynamic properties of dense cubic lattice multichain systems. II. Probe polymer in a matrix of different degrees of polymerization The Journal of Chemical Physics. 86: 7174-7180. DOI: 10.1063/1.452367  0.308
1987 Kolinski A, Skolnick J, Yaris R. Monte Carlo studies on the long time dynamic properties of dense cubic lattice multichain systems. I. The homopolymeric melt The Journal of Chemical Physics. 86: 7164-7173. DOI: 10.1063/1.452366  0.308
1987 Kolinski A, Skolnick J, Yaris R. Dynamic Monte Carlo study of the conformational properties of long flexible polymers Macromolecules. 20: 438-440. DOI: 10.1021/Ma00168A039  0.343
1986 Kolinski A, Skolnick J, Yaris R. Monte Carlo simulations on an equilibrium globular protein folding model. Proceedings of the National Academy of Sciences of the United States of America. 83: 7267-71. PMID 3463964 DOI: 10.1073/Pnas.83.19.7267  0.45
1986 Kolinski A, Skolnick J, Yaris R. The collapse transition of semiflexible polymers. A Monte Carlo simulation of a model system The Journal of Chemical Physics. 85: 3585-3597. DOI: 10.1063/1.450930  0.315
1986 Kolinski A, Skolnick J, Yaris R. Monte Carlo study of local orientational order in a semiflexible polymer melt model Macromolecules. 19: 2550-2560. DOI: 10.1021/Ma00164A017  0.338
1986 Skolnick J. Theory of the helix-coil transition in doubly crosslinked, two-chain, coiled coils. A globular protein model Macromolecules. 19: 1153-1166. DOI: 10.1021/Ma00158A037  0.41
1986 Holtzer A, Skolnick J. Theory of α-helix-to-random-coil transition of two-chain, coiled coils. Application of the augmented theory to thermal denaturation of ββ tropomyosin Macromolecules. 19: 1769-1770. DOI: 10.1021/Ma00150A005  0.33
1985 Skolnick J. Role of topological constraints in the all-or-none transition of a globular protein model: theory of the helix-coil transition in doubly crosslinked, coiled coils. Biochemical and Biophysical Research Communications. 129: 848-53. PMID 4015655 DOI: 10.1016/0006-291X(85)91969-2  0.401
1985 Skolnick J. Theory of the helix-coil transition in singly cross-linked, two-chain, coiled coils Macromolecules. 18: 1535-1549. DOI: 10.1021/Ma00150A004  0.371
1985 Skolnick J. Theory of the helix-coil transition in single-chain polypeptides with interhelical contacts. The broken .alpha.-helical hairpin model Macromolecules. 18: 1073-1083. DOI: 10.1021/Ma00148A005  0.41
1985 Perchak D, Skolnick J, Yaris R. Dynamics of rigid and flexible constraints for polymers. Effect of the Fixman potential Macromolecules. 18: 519-525. DOI: 10.1021/Ma00145A036  0.324
1983 Skolnick J. Effect of loop entropy on the helix-coil transition of α-helical, two-chain, coiled coils Macromolecules. 16: 1069-1083. DOI: 10.1021/Ma00241A008  0.364
1983 Skolnick J, Yaris R. Damped orientational diffusion model of polymer local main-chain motion. 3. Inclusion of chain-chain interactions Macromolecules. 16: 266-272. DOI: 10.1021/Ma00236A021  0.305
1983 Skolnick J. Effect of loop entropy on the helix-coil transition of α-helical, two-chain, coiled coils. 2. Supermatrix formulation of the perfect-matching model Macromolecules. 16: 1763-1770. DOI: 10.1021/Ma00134A022  0.397
1982 Mattice WL, Skolnick J. Stability of the crosslinked tropomyosin dimer: crosslink effect on the cooperativity of the ordering process and on the maximum in the helix probability profile Macromolecules. 15: 1088-1093. DOI: 10.1021/Ma00232A025  0.303
1982 Skolnick J, Holtzer A. Theory of α-helix-to-random coil transitions of two-chain, coiled coils. Application to a synthetic analog of tropomyosin Macromolecules. 15: 812-821. DOI: 10.1021/Ma00231A024  0.363
1981 Skolnick J, Mattice WL. Rates of conformational transitions in branched chain molecules Macromolecules. 14: 292-299. DOI: 10.1021/Ma50003A014  0.305
1976 Fixman M, Skolnick J. Moments and distribution function of polymer chains The Journal of Chemical Physics. 65: 1700-1707. DOI: 10.1063/1.433314  0.584
Show low-probability matches.