Year |
Citation |
Score |
2020 |
Kiatsupaibul S, Smith RL, Zabinsky ZB. Single observation adaptive search for discrete and continuous stochastic optimization Operations Research Letters. 48: 666-673. DOI: 10.1016/J.Orl.2020.08.004 |
0.851 |
|
2020 |
Ryan CT, Smith RL. Dual-based methods for solving infinite-horizon nonstationary deterministic dynamic programs Mathematical Programming. 1-33. DOI: 10.1007/S10107-020-01478-1 |
0.488 |
|
2018 |
Kiatsupaibul S, Smith RL, Zabinsky ZB. Single Observation Adaptive Search for Continuous Simulation Optimization Operations Research. 66: 1713-1727. DOI: 10.1287/Opre.2018.1759 |
0.802 |
|
2018 |
Ryan CT, Smith RL, Epelman MA. A Simplex Method for Uncapacitated Pure-supply Infinite Network Flow Problems Siam Journal On Optimization. 28: 2022-2048. DOI: 10.1137/17M1137553 |
0.713 |
|
2017 |
Lee I, Epelman MA, Romeijn HE, Smith RL. Simplex Algorithm for Countable-State Discounted Markov Decision Processes Operations Research. 65: 1029-1042. DOI: 10.1287/Opre.2017.1598 |
0.815 |
|
2016 |
Kiatsupaibul S, Smith RL, Zabinsky ZB. Solving infinite horizon optimization problems through analysis of a one-dimensional global optimization problem Journal of Global Optimization. 1-17. DOI: 10.1007/S10898-016-0423-7 |
0.842 |
|
2015 |
Lortz TD, Dolinskaya IS, Ghate A, Smith RL. Solvability in infinite horizon optimization Operations Research Letters. 43: 498-503. DOI: 10.1016/J.Orl.2015.07.003 |
0.802 |
|
2015 |
Dolinskaya IS, Epelman MA, Şişikoğlu Sir E, Smith RL. Parameter-Free Sampled Fictitious Play for Solving Deterministic Dynamic Programming Problems Journal of Optimization Theory and Applications. DOI: 10.1007/S10957-015-0798-5 |
0.765 |
|
2014 |
Ghate A, Cheng SF, Baumert S, Reaume D, Sharma D, Smith RL. Sampled fictitious play for multi-action stochastic dynamic programs Iie Transactions (Institute of Industrial Engineers). 46: 742-756. DOI: 10.1080/0740817X.2013.857062 |
0.812 |
|
2014 |
Lee I, Epelman MA, Romeijn HE, Smith RL. Extreme point characterization of constrained nonstationary infinite-horizon Markov decision processes with finite state space Operations Research Letters. 42: 238-245. DOI: 10.1016/J.Orl.2014.03.001 |
0.817 |
|
2013 |
Ghate A, Smith RL. A linear programming approach to nonstationary infinite-horizon Markov decision processes Operations Research. 61: 413-425. DOI: 10.1287/Opre.1120.1121 |
0.531 |
|
2013 |
Cheng SF, Nicholson BE, Epelman MA, Reaume DJ, Smith RL. A dynamic programming approach to achieving an optimal end-state along a serial production line Iie Transactions (Institute of Industrial Engineers). 45: 1278-1292. DOI: 10.1080/0740817X.2013.770183 |
0.794 |
|
2013 |
Dolinskaya IS, Smith RL. Fastest-Path Planning for Direction-Dependent Speed Functions Journal of Optimization Theory and Applications. 158: 480-497. DOI: 10.1007/S10957-012-0248-6 |
0.45 |
|
2011 |
Wachs AO, Schochetman IE, Smith RL. Average Optimality in Nonhomogeneous Infinite Horizon Markov Decision Processes Mathematics of Operations Research. 36: 147-164. DOI: 10.1287/Moor.1100.0478 |
0.538 |
|
2011 |
Kiatsupaibul S, Smith RL, Zabinsky ZB. An analysis of a variation of hit-and-run for uniform sampling from general regions Acm Transactions On Modeling and Computer Simulation. 21. DOI: 10.1145/1921598.1921600 |
0.804 |
|
2011 |
Epelman M, Ghate A, Smith RL. Sampled fictitious play for approximate dynamic programming Computers and Operations Research. 38: 1705-1718. DOI: 10.1016/J.Cor.2011.01.023 |
0.779 |
|
2011 |
Mete HO, Shen Y, Zabinsky ZB, Kiatsupaibul S, Smith RL. Pattern discrete and mixed Hit-and-Run for global optimization Journal of Global Optimization. 50: 597-627. DOI: 10.1007/S10898-010-9534-8 |
0.806 |
|
2010 |
Ghate A, Sharma D, Smith RL. A shadow simplex method for infinite linear programs Operations Research. 58: 865-877. DOI: 10.1287/Opre.1090.0755 |
0.495 |
|
2009 |
Baumert S, Ghate A, Kiatsupaibul S, Shen Y, Smith RL, Zabinsky ZB. Discrete hit-and-run for sampling points from arbitrary distributions over subsets of integer hyperrectangles Operations Research. 57: 727-739. DOI: 10.1287/Opre.1080.0600 |
0.791 |
|
2009 |
Ghate A, Smith RL. Optimal Backlogging over an infinite horizon under time-varying convex production and inventory costs Manufacturing and Service Operations Management. 11: 362-368. DOI: 10.1287/Msom.1080.0218 |
0.479 |
|
2009 |
Ghate A, Smith RL. Characterizing extreme points as basic feasible solutions in infinite linear programs Operations Research Letters. 37: 7-10. DOI: 10.1016/J.Orl.2008.09.002 |
0.405 |
|
2009 |
Ghate A, Smith RL. A hit-and-run approach for generating scale invariant small world networks Networks. 53: 67-78. DOI: 10.1002/Net.V53:1 |
0.419 |
|
2008 |
Ghate A, Smith RL. A dynamic programming approach to efficient sampling from Boltzmann distributions Operations Research Letters. 36: 665-668. DOI: 10.1016/J.Orl.2008.07.009 |
0.321 |
|
2008 |
Ghate A, Smith RL. Adaptive search with stochastic acceptance probabilities for global optimization Operations Research Letters. 36: 285-290. DOI: 10.1016/J.Orl.2007.10.005 |
0.523 |
|
2007 |
Cheevaprawatdomrong T, Schochetman IE, Smith RL, Garcia A. Solution and Forecast Horizons for Infinite-Horizon Nonhomogeneous Markov Decision Processes Mathematics of Operations Research. 32: 51-72. DOI: 10.1287/Moor.1060.0224 |
0.834 |
|
2007 |
Schochetman IE, Smith RL. Infinite horizon optimality criteria for equipment replacement under technological change Operations Research Letters. 35: 485-492. DOI: 10.1016/J.Orl.2006.10.001 |
0.458 |
|
2007 |
Schochetman IE, Smith RL, Tsui SK. Convergence of minimum norm elements of projections and intersections of nested affine spaces in Hilbert space Journal of Mathematical Analysis and Applications. 330: 467-482. DOI: 10.1016/J.Jmaa.2006.07.086 |
0.41 |
|
2007 |
Shen Y, Kiatsupaibul S, Zabinsky ZB, Smith RL. An analytically derived cooling schedule for simulated annealing Journal of Global Optimization. 38: 333-365. DOI: 10.1007/S10898-006-9068-2 |
0.823 |
|
2006 |
Cheng SF, Epelman MA, Smith RL. CoSIGN: A parallel algorithm for coordinated traffic signal control Ieee Transactions On Intelligent Transportation Systems. 7: 551-564. DOI: 10.1109/Tits.2006.884617 |
0.754 |
|
2006 |
Romeijn HE, Sharma D, Smith RL. Extreme point characterizations for infinite network flow problems Networks. 48. DOI: 10.1002/Net.V48:4 |
0.659 |
|
2005 |
Lambert TJ, Epelman MA, Smith RL. A fictitious play approach to large-scale optimization Operations Research. 53: 477-489. DOI: 10.1287/Opre.1040.0178 |
0.835 |
|
2005 |
Schochetman IE, Smith RL. Optimality criteria for deterministic discrete-time infinite horizon optimization International Journal of Mathematics and Mathematical Sciences. 2005: 57-80. DOI: 10.1155/Ijmms.2005.57 |
0.507 |
|
2005 |
Schochetman IE, Smith RL. Existence of efficient solutions in infinite horizon optimization under continuous and discrete controls Operations Research Letters. 33: 97-104. DOI: 10.1016/J.Orl.2004.04.005 |
0.439 |
|
2004 |
Cheevaprawatdomrong T, Smith RL. Infinite Horizon Production Scheduling in Time-Varying Systems Under Stochastic Demand Operations Research. 52: 105-115. DOI: 10.1287/Opre.1030.0080 |
0.815 |
|
2003 |
Zabinsky ZB, Smith RL, Kristinsdottir BP. Optimal estimation of univariate black-box Lipschitz functions with upper and lower error bounds Computers and Operations Research. 30: 1539-1553. DOI: 10.1016/S0305-0548(02)00082-5 |
0.632 |
|
2003 |
Cheevaprawatdomrong T, Smith RL. A paradox in equipment replacement under technological improvement Operations Research Letters. 31: 77-82. DOI: 10.1016/S0167-6377(02)00153-0 |
0.743 |
|
2001 |
Schochetman IE, Smith RL, Tsui S. On The Closure Of The Sum Of Closed Subspaces International Journal of Mathematics and Mathematical Sciences. 26: 257-267. DOI: 10.1155/S0161171201005324 |
0.415 |
|
2001 |
Reaume DJ, Romeijn HE, Smith RL. Implementing pure adaptive search for global optimization using Markov chain sampling Journal of Global Optimization. 20: 33-47. DOI: 10.1023/A:1011279301005 |
0.744 |
|
2001 |
Schochetman IE, Smith RL. A Finite Algorithm for Solving Infinite Dimensional Optimization Problems Annals of Operations Research. 101: 119-142. DOI: 10.1023/A:1010964322204 |
0.395 |
|
2000 |
Wunderlich KE, Kaufman DE, Smith RL. Link Travel Time Prediction for Decentralized Route Guidance Architectures Ieee Transactions On Intelligent Transportation Systems. 1: 4-14. DOI: 10.1109/6979.869017 |
0.369 |
|
2000 |
Garcia A, Smith RL. Markov Perfect Equilibrium Existence for a Class of Undiscounted Infinite-Horizon Dynamic Games Journal of Optimization Theory and Applications. 106: 421-429. DOI: 10.1023/A:1004663800322 |
0.367 |
|
2000 |
Garcia A, Reaume D, Smith RL. Fictitious Play For Finding System Optimal Routings In Dynamic Traffic Networks Transportation Research Part B-Methodological. 34: 147-156. DOI: 10.1016/S0191-2615(99)00018-1 |
0.371 |
|
2000 |
Garcia A, Smith RL. Solving nonstationary infinite horizon stochastic production planning problems Operations Research Letters. 27: 135-141. DOI: 10.1016/S0167-6377(00)00049-3 |
0.511 |
|
2000 |
Garcia A, Smith RL. Solving Nonstationary Infinite Horizon Dynamic Optimization Problems Journal of Mathematical Analysis and Applications. 244: 304-317. DOI: 10.1006/Jmaa.1999.6694 |
0.54 |
|
1999 |
Romeijn HE, Smith RL. Parallel algorithms for solving aggregated shortest-path problems Computers and Operations Research. 26: 941-953. DOI: 10.1016/S0305-0548(99)00029-5 |
0.68 |
|
1998 |
Kaufman DE, Smith RL. Direction Choice for Accelerated Convergence in Hit-And-Run Sampling Operations Research. 46: 84-95. DOI: 10.1287/Opre.46.1.84 |
0.472 |
|
1998 |
Cross WP, Romeijn HE, Smith RL. Approximating extreme points of infinite dimensional convex sets Mathematics of Operations Research. 23: 433-442. DOI: 10.1287/Moor.23.2.433 |
0.691 |
|
1998 |
Schochetman IE, Smith RL. Existence and Discovery of Average Optimal Solutions in Deterministic Infinite Horizon Optimization Mathematics of Operations Research. 23: 416-432. DOI: 10.1287/Moor.23.2.416 |
0.472 |
|
1998 |
Romeijn HE, Smith RL. Shadow prices in infinite-dimensional linear programming Mathematics of Operations Research. 23: 239-256. DOI: 10.1287/Moor.23.1.239 |
0.714 |
|
1998 |
Smith RL, Zhang RQ. Infinite horizon production planning in time-varying systems with convex production and inventory costs Management Science. 44: 1313-1320. DOI: 10.1287/Mnsc.44.9.1313 |
0.638 |
|
1998 |
Chou YL, Romeijn HE, Smith RL. Approximating shortest paths in large-scale networks with an application to intelligent transportation systems Informs Journal On Computing. 10: 163-177. DOI: 10.1287/Ijoc.10.2.163 |
0.624 |
|
1998 |
Kaufman DE, Smith RL, Wunderlich KE. User-equilibrium properties of fixed points in dynamic traffic assignment Transportation Research Part C-Emerging Technologies. 6: 1-16. DOI: 10.1016/S0968-090X(98)00005-9 |
0.358 |
|
1998 |
Kaufman DE, Nonis J, Smith RL. A Mixed Integer Linear Programming Model For Dynamic Route Guidance Transportation Research Part B-Methodological. 32: 431-440. DOI: 10.1016/S0191-2615(98)00013-7 |
0.476 |
|
1995 |
Benson P, Smith RL, Schochetman IE, Bean JC. Optimal solution approximation for infinite positive-definite quadratic programming Journal of Optimization Theory and Applications. 85: 235-248. DOI: 10.1007/Bf02192225 |
0.73 |
|
1995 |
Schochetman IE, Smith RL, Tsui SK. Solution Existence for Time-Varying Infinite Horizon Quadratic Programming Journal of Mathematical Analysis and Applications. 195: 135-147. DOI: 10.1006/Jmaa.1995.1347 |
0.519 |
|
1995 |
Kim DS, Smith RL. An exact aggregation/disaggregation algorithm for large scale markov chains Naval Research Logistics. 42: 1115-1128. DOI: 10.1002/1520-6750(199510)42:7<1115::Aid-Nav3220420710>3.0.Co;2-W |
0.397 |
|
1994 |
Schochetman IE, Smith RL. Solution approximation in infinite horizon linear quadratic control Ieee Transactions On Automatic Control. 39: 596-601. DOI: 10.1109/9.280796 |
0.477 |
|
1994 |
Romeijn HE, Smith RL. Simulated annealing and adaptive search in global optimization Probability in the Engineering and Informational Sciences. 8: 571-590. DOI: 10.1017/S0269964800003624 |
0.726 |
|
1994 |
Benson P, Smith R, Schochetman I, Bean J. Optimal solution characterization for infinite positive semi-definite programming Applied Mathematics Letters. 7: 65-67. DOI: 10.1016/0893-9659(94)90013-2 |
0.689 |
|
1994 |
Romeijn HE, Smith RL. Simulated annealing for constrained global optimization Journal of Global Optimization. 5: 101-126. DOI: 10.1007/Bf01100688 |
0.686 |
|
1994 |
Bean JC, Lohmann JR, Smith RL. Equipment replacement under technological change Naval Research Logistics. 41: 117-128. DOI: 10.1002/1520-6750(199402)41:1<117::Aid-Nav3220410108>3.0.Co;2-U |
0.68 |
|
1993 |
Bélisle CJP, Romeijn HE, Smith RL. Hit-and-Run Algorithms for Generating Multivariate Distributions Mathematics of Operations Research. 18: 255-266. DOI: 10.1287/Moor.18.2.255 |
0.664 |
|
1993 |
Kaufman DE, Smith RL. Fastest Paths In Time-Dependent Networks For Intelligent Vehicle-Highway Systems Application∗ Journal of Intelligent Transportation Systems. 1: 1-11. DOI: 10.1080/10248079308903779 |
0.408 |
|
1993 |
Lafortune S, Sengupta R, Kaufman DE, Smith RL. Dynamic system-optimal traffic assignment using a state space model Transportation Research Part B. 27: 451-472. DOI: 10.1016/0191-2615(93)90017-5 |
0.482 |
|
1993 |
Bean JC, Smith RL. Conditions for the discovery of solution horizons Mathematical Programming. 59: 215-229. DOI: 10.1007/Bf01581244 |
0.724 |
|
1993 |
Zabinsky ZB, Smith RL, McDonald JF, Romeijn HE, Kaufman DE. Improving Hit-and-Run for global optimization Journal of Global Optimization. 3: 171-192. DOI: 10.1007/Bf01096737 |
0.809 |
|
1993 |
Park Y, Bean J, Smith R. Optimal Average Value Convergence in Nonhomogeneous Markov Decision Processes Journal of Mathematical Analysis and Applications. 179: 525-536. DOI: 10.1006/Jmaa.1993.1367 |
0.719 |
|
1992 |
Bean JC, Higle JL, Smith RL. Capacity Expansion Under Stochastic Demands Operations Research. 40: S210-S216. DOI: 10.1287/Opre.40.3.S210 |
0.709 |
|
1992 |
Alden JM, Smith RL. Rolling horizon procedures in nonhomogeneous Markov decision processes Operations Research. 40: 183-194. DOI: 10.1287/Opre.40.3.S183 |
0.426 |
|
1992 |
Ryan SM, Bean JC, Smith RL. A Tie-Breaking Rule for Discrete Infinite Horizon Optimization Operations Research. 40: S117-S126. DOI: 10.1287/Opre.40.1.S117 |
0.76 |
|
1992 |
Schochetman IE, Smith RL. Convergence of best approximations from unbounded sets Journal of Mathematical Analysis and Applications. 166: 112-128. DOI: 10.1016/0022-247X(92)90330-G |
0.378 |
|
1992 |
Schochetman IE, Smith RL. Finite dimensional approximation in infinite dimensional mathematical programming Mathematical Programming. 54: 307-333. DOI: 10.1007/Bf01586057 |
0.445 |
|
1992 |
Zabinsky ZB, Smith RL. Pure adaptive search in global optimization Mathematical Programming. 53: 323-338. DOI: 10.1007/Bf01585710 |
0.696 |
|
1992 |
Romeijn HE, Smith RL, Bean JC. Duality in infinite dimensional linear programming Mathematical Programming. 53: 79-97. DOI: 10.1007/Bf01585695 |
0.792 |
|
1991 |
Boender CGE, Caron RJ, McDonald JF, Kan AHGR, Romeijn HE, Smith RL, Telgen J, Vorst ACF. Shake-and-Bake Algorithms for Generating Uniform Points on the Boundary of Bounded Polyhedra Operations Research. 39: 945-954. DOI: 10.1287/Opre.39.6.945 |
0.673 |
|
1991 |
Schochetman IE, Smith RL. Convergence of selections with applications in optimization Journal of Mathematical Analysis and Applications. 155: 278-292. DOI: 10.1016/0022-247X(91)90038-2 |
0.518 |
|
1990 |
Higle JL, Bean JC, Smith RL. Deterministic Equivalence in Stochastic Infinite Horizon Problems Mathematics of Operations Research. 15: 396-407. DOI: 10.1287/Moor.15.3.396 |
0.701 |
|
1990 |
Bean JC, Smith RL, Lasserre JB. Denumerable state nonhomogeneous Markov decision processes Journal of Mathematical Analysis and Applications. 153: 64-77. DOI: 10.1016/0022-247X(90)90265-H |
0.723 |
|
1990 |
Brown DE, Smith RL. A correspondence principle for relative entropy minimization Naval Research Logistics. 37: 191-202. DOI: 10.1002/1520-6750(199004)37:2<191::Aid-Nav3220370202>3.0.Co;2-C |
0.646 |
|
1989 |
Schochetman IE, Smith RL. Infinite horizon optimization Mathematics of Operations Research. 14: 559-574. DOI: 10.1287/Moor.14.3.559 |
0.57 |
|
1989 |
Patel NR, Smith RL, Zabinsky ZB. Pure adaptive search in monte carlo optimization Mathematical Programming. 43: 317-328. DOI: 10.1007/Bf01582296 |
0.686 |
|
1987 |
Hopp WJ, Bean JC, Smith RL. A New Optimality Criterion for Nonhomogeneous Markov Decision Processes Operations Research. 35: 875-883. DOI: 10.1287/Opre.35.6.875 |
0.784 |
|
1987 |
Bean JC, Birge JR, Smith RL. AGGREGATION IN DYNAMIC PROGRAMMING Operations Research. 35: 215-220. DOI: 10.1287/Opre.35.2.215 |
0.705 |
|
1987 |
Berbee HCP, Boender CGE, Rinnooy Ran AHG, Scheffer CL, Smith RL, Telgen J. Hit-and-run algorithms for the identification of nonredundant linear inequalities Mathematical Programming. 37: 184-207. DOI: 10.1007/Bf02591694 |
0.416 |
|
1987 |
Bean JC, Smith RL, Yano CA. Forecast horizons for the discounted dynamic lot-size problem allowing speculative motive Naval Research Logistics. 34: 761-774. DOI: 10.1002/1520-6750(198712)34:6<761::Aid-Nav3220340602>3.0.Co;2-X |
0.713 |
|
1986 |
Berenguer SE, Smith RL. The expected number of extreme points of a random linear program Mathematical Programming. 35: 129-134. DOI: 10.1007/Bf01580643 |
0.391 |
|
1985 |
Bean JC, Smith RL. Optimal Capacity Expansion Over an Infinite Horizon Management Science. 31: 1523-1532. DOI: 10.1287/Mnsc.31.12.1523 |
0.745 |
|
1984 |
Smith RL. Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions Operations Research. 32: 1296-1308. DOI: 10.1287/Opre.32.6.1296 |
0.373 |
|
1984 |
Bean JC, Smith RL. Conditions for the Existence of Planning Horizons Mathematics of Operations Research. 9: 391-401. DOI: 10.1287/Moor.9.3.391 |
0.745 |
|
1984 |
Birge JR, Smith RL. Random procedures for nonredundant constranit identification in stochastic linear programs American Journal of Mathematical and Management Sciences. 4: 41-70. DOI: 10.1080/01966324.1984.10737136 |
0.433 |
|
1984 |
Bean JC, Lohmann JR, Smith RL. A Dynamic Infinite Horizon Replacement Economy Decision Model The Engineering Economist. 30: 99-120. DOI: 10.1080/00137918408902899 |
0.606 |
|
1983 |
Patel NR, Smith RL. Technical Note-The Asymptotic Extreme Value Distribution of the Sample Minimum of a Concave Function under Linear Constraints Operations Research. 31: 789-794. DOI: 10.1287/Opre.31.4.789 |
0.364 |
|
1982 |
Sampson AR, Smith RL. Assessing Risks Through the Determination of Rare Event Probabilities Operations Research. 30: 839-866. DOI: 10.1287/Opre.30.5.839 |
0.321 |
|
1982 |
May JH, Smith RL. Random polytopes: Their definition, generation and aggregate properties Mathematical Programming. 24: 39-54. DOI: 10.1007/Bf01585093 |
0.382 |
|
1981 |
Smith RL. Planning horizons for the deterministic capacity problem Computers and Operations Research. 8: 209-220. DOI: 10.1016/0305-0548(81)90009-5 |
0.524 |
|
1979 |
Smith RL. Turnpike Results for Single Location Capacity Expansion Management Science. 25: 474-484. DOI: 10.1287/Mnsc.25.5.474 |
0.552 |
|
1979 |
Smith RL. Optimal expansion policies for the deterministic capacity problem Engineering Economist. 25: 149-160. DOI: 10.1080/00137917908902847 |
0.463 |
|
1979 |
Smith RL. Deferral strategies for a dynamic communications network Networks. 9: 61-87. DOI: 10.1002/Net.3230090105 |
0.334 |
|
1975 |
Smith RL, Charrow RP. Upper and Lower Bounds for Probability of Guilt Based on Circumstantial Evidence Journal of the American Statistical Association. 70: 555-560. DOI: 10.1080/01621459.1975.10482471 |
0.306 |
|
1973 |
Smith RL. An elementary proof of the duality theorem of linear programming Journal of Optimization Theory and Applications. 12: 129-135. DOI: 10.1007/Bf00934813 |
0.367 |
|
Show low-probability matches. |