Junfeng Fang - Publications

Affiliations: 
 

133 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 Fu S, Le J, Guo X, Sun N, Zhang W, Song W, Fang J. Polishing Lead-Poor Surface for Efficient Inverted CsPbI Perovskite Solar Cells. Advanced Materials (Deerfield Beach, Fla.). e2205066. PMID 35916039 DOI: 10.1002/adma.202205066  0.382
2022 Fu S, Sun N, Le J, Zhang W, Miao R, Zhang W, Kuang Y, Song W, Fang J. Tailoring Defects Regulation in Air-Fabricated CsPbI for Efficient Inverted All-Inorganic Perovskite Solar Cells with of 1.225 V. Acs Applied Materials & Interfaces. PMID 35767458 DOI: 10.1021/acsami.2c07420  0.324
2022 Li X, Zhang W, Guo X, Lu C, Wei J, Fang J. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science (New York, N.Y.). 375: 434-437. PMID 35084976 DOI: 10.1126/science.abl5676  0.339
2021 Liu X, Fu S, Zhang W, Xu Z, Li X, Fang J, Zhu Y. A Universal Dopant-Free Polymeric Hole-Transporting Material for Efficient and Stable All-Inorganic and Organic-Inorganic Perovskite Solar Cells. Acs Applied Materials & Interfaces. PMID 34705431 DOI: 10.1021/acsami.1c13792  0.443
2021 Feng X, Wei J, Li X, Zhang W, Zhao X, Lu C, Guo X, Fang J. Radical Form of PbI: A New Defect Passivator for Efficient Perovskite Solar Cells. Acs Applied Materials & Interfaces. PMID 34558886 DOI: 10.1021/acsami.1c12764  0.396
2021 Wu T, Qin Z, Wang Y, Wu Y, Chen W, Zhang S, Cai M, Dai S, Zhang J, Liu J, Zhou Z, Liu X, Segawa H, Tan H, Tang Q, ... Fang J, et al. The Main Progress of Perovskite Solar Cells in 2020-2021. Nano-Micro Letters. 13: 152. PMID 34232444 DOI: 10.1007/s40820-021-00672-w  0.351
2021 Wan J, Xia Y, Fang J, Zhang Z, Xu B, Wang J, Ai L, Song W, Hui KN, Fan X, Li Y. Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency. Nano-Micro Letters. 13: 44. PMID 34138225 DOI: 10.1007/s40820-020-00566-3  0.371
2020 Fu S, Li X, Wan L, Zhang W, Song W, Fang J. Effective Surface Treatment for High-Performance Inverted CsPbIBr Perovskite Solar Cells with Efficiency of 15.92. Nano-Micro Letters. 12: 170. PMID 34138163 DOI: 10.1007/s40820-020-00509-y  0.346
2020 Liu X, Li X, Wang L, Fang J, Yang C. Synergistic effects of the processing solvent and additive on the production of efficient all-polymer solar cells. Nanoscale. PMID 32052808 DOI: 10.1039/c9nr10495j  0.348
2020 Li H, Wang W, Yang Y, Wang Y, Li P, Huang J, Li J, Lu Y, Li Z, Wang Z, Fan B, Fang J, Song W. Kirigami-Based Highly Stretchable Thin Film Solar Cells that are Mechanically Stable for More than 1000 Cycles. Acs Nano. PMID 32023036 DOI: 10.1021/Acsnano.9B06562  0.443
2020 Wen R, Xia Y, Huang H, Wen S, Wang J, Fang J, Fan X. Boosted efficiency of conductive metal oxide-free pervoskite solar cells using poly(3-(4-methylamincarboxylbutyl)thiophene) buffer layers Journal of Physics D: Applied Physics. 53: 284001. DOI: 10.1088/1361-6463/Ab83Be  0.477
2020 Zhang W, Wan L, Fu S, Li X, Fang J. Reducing energy loss and stabilising the perovskite/poly (3-hexylthiophene) interface through a polyelectrolyte interlayer Journal of Materials Chemistry A. 8: 6546-6554. DOI: 10.1039/D0Ta01860K  0.478
2020 Wan L, Zhang W, Fu S, Chen L, Wang Y, Xue Z, Tao Y, Zhang W, Song W, Fang J. Achieving over 21% efficiency in inverted perovskite solar cells by fluorinating a dopant-free hole transporting material Journal of Materials Chemistry A. 8: 6517-6523. DOI: 10.1039/D0Ta00522C  0.419
2020 Fu S, Zhang W, Li X, Wan L, Wu Y, Chen L, Liu X, Fang J. Dual-Protection Strategy for High-Efficiency and Stable CsPbI2Br Inorganic Perovskite Solar Cells Acs Energy Letters. 5: 676-684. DOI: 10.1021/Acsenergylett.9B02716  0.51
2020 Li S, Wan L, Chen L, Deng C, Tao L, Lu Z, Zhang W, Fang J, Song W. Self-Doping a Hole-Transporting Layer Based on a Conjugated Polyelectrolyte Enables Efficient and Stable Inverted Perovskite Solar Cells Acs Applied Energy Materials. 3: 11724-11731. DOI: 10.1021/acsaem.0c01827  0.349
2020 Deng C, Wan L, Li S, Tao L, Wang S, Zhang W, Fang J, Fu Z, Song W. Naphthalene diimide based polymer as electron transport layer in inverted perovskite solar cells Organic Electronics. 87: 105959. DOI: 10.1016/J.ORGEL.2020.105959  0.325
2020 Fu S, Li X, Wan L, Zhang W, Song W, Fang J. Effective Surface Treatment for High-Performance Inverted CsPbI2Br Perovskite Solar Cells with Efficiency of 15.92% Nano-Micro Letters. 12. DOI: 10.1007/S40820-020-00509-Y  0.451
2019 Hui W, Yang Y, Xu Q, Gu H, Feng S, Su Z, Zhang M, Wang J, Li X, Fang J, Xia F, Xia Y, Chen Y, Gao X, Huang W. Red-Carbon-Quantum-Dot-Doped SnO Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. Advanced Materials (Deerfield Beach, Fla.). e1906374. PMID 31799762 DOI: 10.1002/Adma.201906374  0.367
2019 Liu X, Li X, Zheng N, Gu C, Wang L, Fang J, Yang C. Insight into the Efficiency and Stability of All-Polymer Solar Cells Based on Two 2D-Conjugated Polymer Donors: Achieving High Fill Factor of 78. Acs Applied Materials & Interfaces. PMID 31640340 DOI: 10.1021/acsami.9b15672  0.389
2019 Wan L, Zhang W, Wu Y, Li X, Song C, He Y, Zhang W, Fang J. Efficient light harvesting with a nanostructured organic electron-transporting layer in perovskite solar cells. Nanoscale. PMID 31049532 DOI: 10.1039/C9Nr03030A  0.571
2019 Wang Y, Wu Y, Fu S, Song C, Wan L, Zhang W, Li X, Yang W, Song W, Fang J. Barium acetate as an additive for high performance perovskite solar cells Journal of Materials Chemistry C. 7: 11411-11418. DOI: 10.1039/C9Tc04067F  0.457
2019 Song C, Li X, Wang Y, Fu S, Wan L, Liu S, Zhang W, Song W, Fang J. Sulfonyl-based non-fullerene electron acceptor-assisted grain boundary passivation for efficient and stable perovskite solar cells Journal of Materials Chemistry A. 7: 19881-19888. DOI: 10.1039/C9Ta06439G  0.463
2019 Zhang W, Wan L, Li X, Wu Y, Fu S, Fang J. A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells Journal of Materials Chemistry A. 7: 18898-18905. DOI: 10.1039/C9Ta05048E  0.471
2019 Wu Y, Wan L, Fu S, Zhang W, Li X, Fang J. Liquid metal acetate assisted preparation of high-efficiency and stable inverted perovskite solar cells Journal of Materials Chemistry A. 7: 14136-14144. DOI: 10.1039/C9Ta04192C  0.406
2019 Wu Y, Li X, Fu S, Wan L, Fang J. Efficient methylammonium lead trihalide perovskite solar cells with chloroformamidinium chloride (Cl-FACl) as an additive Journal of Materials Chemistry A. 7: 8078-8084. DOI: 10.1039/C9Ta01319A  0.482
2019 Wu Y, Wan L, Zhang W, Li X, Fang J. In situ grown silver bismuth sulfide nanorod arrays and their application to solar cells Crystengcomm. 21: 3137-3141. DOI: 10.1039/C9Ce00164F  0.415
2019 Liu X, Li X, Zou Y, Liu H, Wang L, Fang J, Yang C. Energy level-modulated non-fullerene small molecule acceptors for improved VOC and efficiency of inverted perovskite solar cells Journal of Materials Chemistry A. 7: 3336-3343. DOI: 10.1039/C8Ta12028E  0.419
2019 Chen L, Wan L, Li X, Zhang W, Fu S, Wang Y, Li S, Wang H, Song W, Fang J. Inverted All-Inorganic CsPbI2Br Perovskite Solar Cells with Promoted Efficiency and Stability by Nickel Incorporation Chemistry of Materials. 31: 9032-9039. DOI: 10.1021/Acs.Chemmater.9B03277  0.535
2019 Li H, Li X, Wang W, Huang J, Li J, Huang S, Fan B, Fang J, Song W. Ultraflexible and biodegradable perovskite solar cells utilizing ultrathin cellophane paper substrates and TiO2/Ag/TiO2 transparent electrodes Solar Energy. 188: 158-163. DOI: 10.1016/J.Solener.2019.05.061  0.441
2019 Xie Q, Ming S, Chen L, Wu Y, Zhang W, Liu X, Cao M, Wang H, Fang J. Parameters in planar quantum dot-polymer solar cell: Tuned by QD Eg, ligand exchange and fabrication process Organic Electronics. 69: 1-6. DOI: 10.1016/J.Orgel.2019.02.026  0.45
2019 Li X, Fu S, Liu S, Wu Y, Zhang W, Song W, Fang J. Suppressing the ions-induced degradation for operationally stable perovskite solar cells Nano Energy. 64: 103962. DOI: 10.1016/J.Nanoen.2019.103962  0.379
2019 Li X, Zhang W, Zhang W, Wang H, Fang J. Spontaneous grain polymerization for efficient and stable perovskite solar cells Nano Energy. 58: 825-833. DOI: 10.1016/J.Nanoen.2019.02.009  0.466
2019 Li H, Li X, Wang W, Huang J, Li J, Lu Y, Chang J, Fang J, Song W. Highly Foldable and Efficient Paper-Based Perovskite Solar Cells Solar Rrl. 3: 1800317. DOI: 10.1002/solr.201800317  0.353
2019 Fu S, Li X, Wan L, Wu Y, Zhang W, Wang Y, Bao Q, Fang J. Efficient Passivation with Lead Pyridine‐2‐Carboxylic for High‐Performance and Stable Perovskite Solar Cells Advanced Energy Materials. 9: 1901852. DOI: 10.1002/Aenm.201901852  0.467
2018 Liu X, Zou Y, Wang HQ, Wang L, Fang J, Yang C. High-Performance All-Polymer Solar Cells with High Fill Factor with a Broad Tolerance to Donor/Acceptor Ratio. Acs Applied Materials & Interfaces. PMID 30360059 DOI: 10.1021/Acsami.8B15028  0.538
2018 Li X, Zhang W, Wang YC, Zhang W, Wang HQ, Fang J. In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nature Communications. 9: 3806. PMID 30228277 DOI: 10.1038/S41467-018-06204-2  0.404
2018 Zhang W, Wang YC, Li X, Song C, Wan L, Usman K, Fang J. Recent Advance in Solution-Processed Organic Interlayers for High-Performance Planar Perovskite Solar Cells. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 5: 1800159. PMID 30027048 DOI: 10.1002/Advs.201800159  0.528
2018 Song C, Liu X, Li X, Wang YC, Wan L, Sun X, Zhang W, Fang J. Perylene Diimide-Based Zwitterion as the Cathode Interlayer for High-Performance Nonfullerene Polymer Solar Cells. Acs Applied Materials & Interfaces. PMID 29671565 DOI: 10.1021/Acsami.8B01147  0.526
2018 Chang J, Wang Y, Song C, Zhu L, Guo Q, Fang J. Carboxylic ester-terminated fulleropyrrolidine as an efficient electron transport material for inverted perovskite solar cells Journal of Materials Chemistry C. 6: 6982-6987. DOI: 10.1039/C8Tc01955J  0.454
2018 Huang J, Liu X, Lu Y, Zhou Y, Xu J, Li J, Wang H, Fang J, Yang Y, Wang W, Tan R, Song W. Seed-layer-free growth of ultra-thin Ag transparent conductive films imparts flexibility to polymer solar cells Solar Energy Materials and Solar Cells. 184: 73-81. DOI: 10.1016/J.Solmat.2018.04.002  0.36
2018 Hao M, Li X, Zhao Y, Chen Z, Fang J, Wang L, Yang C. Influence of side chains on low optical bandgap copolymers based on 2,1,3-benzoxadiazole for polymer solar cells Organic Electronics. 61: 261-265. DOI: 10.1016/J.Orgel.2018.06.001  0.414
2018 Guo X, Zhang Y, Liu X, Braun S, Wang Z, Li B, Li Y, Duan C, Fahlman M, Tang J, Fang J, Bao Q. Novel small-molecule zwitterionic electrolyte with ultralow work function as cathode modifier for inverted polymer solar cells Organic Electronics. 59: 15-20. DOI: 10.1016/J.Orgel.2018.04.036  0.515
2018 Usman K, Ming S, Liu X, Li X, Gui Z, Xie Q, Zhang W, Wu Y, Wang H, Fang J. The study of colloidal lead bromide perovskite nanocrystals and its application in hybrid solar cells Applied Nanoscience. 8: 715-721. DOI: 10.1007/S13204-018-0744-6  0.513
2018 Li H, Liu X, Wang W, Lu Y, Huang J, Li J, Xu J, Fan P, Fang J, Song W. Realization of Foldable Polymer Solar Cells Using Ultrathin Cellophane Substrates and ZnO/Ag/ZnO Transparent Electrodes (Solar RRL 10∕2018) Solar Rrl. 2: 1870218. DOI: 10.1002/SOLR.201870218  0.304
2018 Liu P, Gao P, Liu X, Wang H, He J, Yang X, Zeng Y, Yan B, Fang J, Ye J. High-Performance Organic-Silicon Heterojunction Solar Cells by Using Al-Doped ZnO as Cathode Interlayer Solar Rrl. 2: 1700223. DOI: 10.1002/SOLR.201700223  0.33
2018 Li X, Zhang W, Usman K, Fang J. Small Molecule Interlayers in Organic Solar Cells Advanced Energy Materials. 8: 1702730. DOI: 10.1002/Aenm.201702730  0.383
2018 Yin X, Liu X, Peng Y, Zeng W, Zhong C, Xie G, Wang L, Fang J, Yang C. Multichannel Strategies to Produce Stabilized Azaphenalene Diradicals: A Predictable Model to Generate Self-Doped Cathode Interfacial Layers for Organic Photovoltaics Advanced Functional Materials. 29: 1806125. DOI: 10.1002/Adfm.201806125  0.335
2017 Li X, Wang YC, Zhu L, Zhang W, Wang HQ, Fang J. Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer. Acs Applied Materials & Interfaces. PMID 28879759 DOI: 10.1021/Acsami.7B11977  0.463
2017 Liu X, Wang HQ, Li Y, Gui Z, Ming S, Usman K, Zhang W, Fang J. Regular Organic Solar Cells with Efficiency over 10% and Promoted Stability by Ligand- and Thermal Annealing-Free Al-Doped ZnO Cathode Interlayer. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 4: 1700053. PMID 28852624 DOI: 10.1002/Advs.201700053  0.47
2017 Li Y, Liu X, Li X, Zhang W, Xing F, Fang J. Electrolytes as Cathode Interlayers in Inverted Organic Solar Cells: Influence of the Cations on Bias-Dependent Performance. Acs Applied Materials & Interfaces. PMID 28218514 DOI: 10.1021/Acsami.7B01240  0.452
2017 Zhang W, Li Y, Zhu L, Liu X, Song C, Li X, Sun X, Fang J. A PTB7-based narrow band-gap conjugated polyelectrolyte as an efficient cathode interlayer in PTB7-based polymer solar cells. Chemical Communications (Cambridge, England). PMID 28120976 DOI: 10.1039/C6Cc09274H  0.445
2017 Zhu L, Song C, Li X, Wang Y, Zhang W, Sun X, Zhang W, Fang J. A benzobis(thiadiazole)-based small molecule as a solution-processing electron extraction material in planar perovskite solar cells Journal of Materials Chemistry C. 5: 10777-10784. DOI: 10.1039/C7Tc03368K  0.41
2017 Li X, Liu X, Zhang W, Wang H, Fang J. Fullerene-Free Organic Solar Cells with Efficiency Over 12% Based on EDTA–ZnO Hybrid Cathode Interlayer Chemistry of Materials. 29: 4176-4180. DOI: 10.1021/Acs.Chemmater.7B01615  0.542
2017 Zhu L, Li X, Song C, Liu X, Wang Y, Zhang W, Fang J. Cathode modification in planar hetero-junction perovskite solar cells through a small-molecule zwitterionic carboxylate Organic Electronics. 48: 204-210. DOI: 10.1016/J.Orgel.2017.06.006  0.531
2017 Zhang W, Song C, Li Y, Liu X, Wang X, Sun X, Fang J. Highly efficient polymer solar cells with PTB7-based narrow band-gap conjugated polyelectrolytes as cathode interlayers: Device performance dependence on the ionic pendants Organic Electronics. 47: 94-101. DOI: 10.1016/J.Orgel.2017.04.026  0.533
2017 Wang Y, Li X, Zhu L, Liu X, Zhang W, Fang J. Efficient and Hysteresis-Free Perovskite Solar Cells Based on a Solution Processable Polar Fullerene Electron Transport Layer Advanced Energy Materials. 7: 1701144. DOI: 10.1002/Aenm.201701144  0.499
2017 Liu T, Zhu L, Gong S, Zhong C, Xie G, Mao E, Fang J, Ma D, Yang C. A Red Fluorescent Emitter with a Simultaneous Hybrid Local and Charge Transfer Excited State and Aggregation-Induced Emission for High-Efficiency, Low Efficiency Roll-Off OLEDs Advanced Optical Materials. 5: 1700145. DOI: 10.1002/Adom.201700145  0.562
2017 Wang Y, Chang J, Zhu L, Li X, Song C, Fang J. Electron-Transport-Layer-Assisted Crystallization of Perovskite Films for High-Efficiency Planar Heterojunction Solar Cells Advanced Functional Materials. 28: 1706317. DOI: 10.1002/Adfm.201706317  0.444
2017 Liu T, Zhu L, Zhong C, Xie G, Gong S, Fang J, Ma D, Yang C. Naphthothiadiazole-Based Near-Infrared Emitter with a Photoluminescence Quantum Yield of 60% in Neat Film and External Quantum Efficiencies of up to 3.9% in Nondoped OLEDs Advanced Functional Materials. 27: 1606384. DOI: 10.1002/Adfm.201606384  0.584
2016 Zhang W, Song C, Liu X, Fang J. Realizing Highly Efficient Inverted Photovoltaic Cells by Combination of Non-Conjugated Small Molecule Zwitterions with Polyethylene Glycol. Acs Applied Materials & Interfaces. PMID 27355561 DOI: 10.1021/Acsami.6B04955  0.566
2016 Liu X, Li X, Li Y, Song C, Zhu L, Zhang W, Wang HQ, Fang J. High-Performance Polymer Solar Cells with PCE of 10.42% via Al-Doped ZnO Cathode Interlayer. Advanced Materials (Deerfield Beach, Fla.). PMID 27309840 DOI: 10.1002/Adma.201601814  0.541
2016 Wu Y, Liu X, Li X, Zhang W, Wang HQ, Fang J. High-Performance Polymer Solar Cells with Zinc Sulfide-Phenanthroline Derivatives as the Hybrid Cathode Interlayers. Acs Applied Materials & Interfaces. PMID 26757048 DOI: 10.1021/Acsami.5B10798  0.534
2016 Li J, Jiu T, Li B, Kuang C, Chen Q, Ma S, Shu J, Fang J. Inverted polymer solar cells with enhanced fill factor by inserting the potassium stearate interfacial modification layer Applied Physics Letters. 108: 181602. DOI: 10.1063/1.4948585  0.476
2016 Liu Y, Zhang W, Xie G, Zeng X, Fang J, Yang C. Triazine-core-containing star-shaped compounds as cathode interlayers for efficient inverted polymer solar cells Journal of Materials Chemistry C. 4: 11278-11283. DOI: 10.1039/C6Tc03948K  0.405
2016 Song C, Liu X, Li X, Zhang W, Bai Y, Fang J. Sulfonate anionic small molecule as a cathode interfacial material for highly efficient polymer solar cells Rsc Advances. 6: 33523-33528. DOI: 10.1039/C6Ra05598B  0.448
2016 Li B, Jiu T, Kuang C, Chen Q, Ma S, Li J, Hou X, Fang J. Improving the efficiency of inverted organic solar cells by introducing ferrocenedicarboxylic acid between an ITO/ZnO interlayer Rsc Advances. 6: 32000-32006. DOI: 10.1039/C6Ra02580C  0.539
2016 Liu X, Wu Y, Li X, Zhang W, Zhao L, Wang H, Fang J. CdS–phenanthroline derivative hybrid cathode interlayers for high performance inverted organic solar cells Journal of Materials Chemistry A. 4: 297-302. DOI: 10.1039/C5Ta06952A  0.432
2016 Sheng J, Wang D, Wu S, Yang X, Ding L, Zhu J, Fang J, Gao P, Ye J. Ideal rear contact formed via employing a conjugated polymer for Si/PEDOT:PSS hybrid solar cells Rsc Advances. 6: 16010-16017. DOI: 10.1039/C5Ra26152J  0.492
2016 Li Y, Li X, Liu X, Zhu L, Zhang W, Fang J. Realizing High Performance Inverted Organic Solar Cells via a Nonconjugated Electrolyte Cathode Interlayer The Journal of Physical Chemistry C. 120: 26244-26248. DOI: 10.1021/Acs.Jpcc.6B10558  0.523
2016 Zhao L, Wang X, Li X, Zhang W, Liu X, Zhu Y, Wang HQ, Fang J. Improving performance and reducing hysteresis in perovskite solar cells by using F8BT as electron transporting layer Solar Energy Materials and Solar Cells. 157: 79-84. DOI: 10.1016/J.Solmat.2016.05.026  0.543
2016 Zhou Y, Qiu N, Li R, Guo Z, Zhang J, Fang J, Huang A, He J, Zha X, Luo K, Yin J, Li Q, Bai X, Huang Q, Du S. Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p-n device Physics Letters, Section a: General, Atomic and Solid State Physics. 380: 1049-1055. DOI: 10.1016/J.Physleta.2016.01.010  0.395
2016 Li B, Jiu T, Kuang C, Ma S, Chen Q, Li X, Fang J. Chlorobenzene vapor assistant annealing method for fabricating high quality perovskite films Organic Electronics: Physics, Materials, Applications. 34: 97-103. DOI: 10.1016/J.Orgel.2016.04.024  0.456
2016 Liu Y, Zhang W, Zou Y, Xie G, Fang J, Yang C. Improved performance of inverted polymer solar cells by utilizing alcohol-soluble oligofluorenes as efficient cathode interlayers Organic Electronics: Physics, Materials, Applications. 30: 182-190. DOI: 10.1016/J.Orgel.2015.12.025  0.497
2015 Liu X, Liu C, Sun R, Liu K, Zhang Y, Wang HQ, Fang J, Yang C. Improved Device Performance of Polymer Solar Cells by Using a Thin Light-harvesting-Complex Modified ZnO Film as the Cathode Interlayer. Acs Applied Materials & Interfaces. PMID 26292068 DOI: 10.1021/Acsami.5B05969  0.567
2015 Zhang Q, Zhang D, Li X, Liu X, Zhang W, Han L, Fang J. Neutral amine based alcohol-soluble interface materials for inverted polymer solar cells: realizing high performance and overcoming solvent erosion. Chemical Communications (Cambridge, England). 51: 10182-5. PMID 26012496 DOI: 10.1039/C5Cc02630J  0.485
2015 Qian M, Zhang R, Hao J, Zhang W, Zhang Q, Wang J, Tao Y, Chen S, Fang J, Huang W. Dramatic Enhancement of Power Conversion Efficiency in Polymer Solar Cells by Conjugating Very Low Ratio of Triplet Iridium Complexes to PTB7. Advanced Materials (Deerfield Beach, Fla.). 27: 3546-52. PMID 25946623 DOI: 10.1002/Adma.201500730  0.451
2015 Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F, Fang J, Li Y. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. Nano Letters. 15: 2756-62. PMID 25803148 DOI: 10.1021/Acs.Nanolett.5B00787  0.78
2015 Li X, Liu X, Wang X, Zhao L, Jiu T, Fang J. Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells Journal of Materials Chemistry A. 3: 15024-15029. DOI: 10.1039/C5Ta04712A  0.437
2015 Hao M, Li X, Shi K, Xie D, Zeng X, Fang J, Yu G, Yang C. Highly efficient photovoltaics and field-effect transistors based on copolymers of mono-fluorinated benzothiadiazole and quaterthiophene: synthesis and effect of the molecular weight on device performance Polymer Chemistry. 6: 6050-6057. DOI: 10.1039/C5Py00615E  0.447
2015 Li X, Zhang W, Wang X, Wu Y, Gao F, Fang J. Critical role of the external bias in improving the performance of polymer solar cells with a small molecule electrolyte interlayer Journal of Materials Chemistry A. 3: 504-508. DOI: 10.1039/C4Ta05516K  0.469
2015 Wang X, Li X, Tang G, Zhao L, Zhang W, Jiu T, Fang J. Improving efficiency of planar hybrid CH 3 NH 3 PbI 3− x Cl x perovskite solar cells by isopropanol solvent treatment Organic Electronics. 24: 205-211. DOI: 10.1016/J.Orgel.2015.05.043  0.517
2015 Li X, Wang X, Zhang W, Wu Y, Gao F, Fang J. The effect of external electric field on the performance of perovskite solar cells Organic Electronics. 18: 107-112. DOI: 10.1016/J.Orgel.2015.01.024  0.53
2015 Luo W, Jiu T, Kuang C, Li B, Lu F, Fang J. Dithiol treatments enhancing the efficiency of hybrid solar cells based on PTB7 and CdSe nanorods Nano Research. DOI: 10.1007/S12274-015-0810-2  0.495
2015 Bao Q, Liu X, Wang E, Fang J, Gao F, Braun S, Fahlman M. Regular Energetics at Conjugated Electrolyte/Electrode Modifier for Organic Electronics and their Implications on Design Rules Advanced Materials Interfaces. 2. DOI: 10.1002/Admi.201500204  0.359
2014 Li X, Zhang W, Wang X, Gao F, Fang J. Disodium edetate as a promising interfacial material for inverted organic solar cells and the device performance optimization. Acs Applied Materials & Interfaces. 6: 20569-73. PMID 25402413 DOI: 10.1021/Am5044278  0.582
2014 Li P, Jiu T, Tang G, Wang G, Li J, Li X, Fang J. Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells. Acs Applied Materials & Interfaces. 6: 18172-9. PMID 25269149 DOI: 10.1021/Am5051789  0.501
2014 Xu X, Wu Y, Fang J, Li Z, Wang Z, Li Y, Peng Q. Side-chain engineering of benzodithiophene-fluorinated quinoxaline low-band-gap co-polymers for high-performance polymer solar cells. Chemistry (Weinheim An Der Bergstrasse, Germany). 20: 13259-71. PMID 25168758 DOI: 10.1002/Chem.201403153  0.38
2014 Sheng J, Fan K, Wang D, Han C, Fang J, Gao P, Ye J. Improvement of the SiOx passivation layer for high-efficiency Si/PEDOT:PSS heterojunction solar cells. Acs Applied Materials & Interfaces. 6: 16027-34. PMID 25157634 DOI: 10.1021/Am503949G  0.404
2014 Li P, Sun C, Jiu T, Wang G, Li J, Li X, Fang J. High-performance inverted solar cells based on blend films of ZnO Naoparticles and TiO(2) nanorods as a cathode buffer layer. Acs Applied Materials & Interfaces. 6: 4074-80. PMID 24606632 DOI: 10.1021/Am405622Q  0.456
2014 Sun C, Wu Y, Zhang W, Jiang N, Jiu T, Fang J. Improving efficiency by hybrid TiO(2) nanorods with 1,10-phenanthroline as a cathode buffer layer for inverted organic solar cells. Acs Applied Materials & Interfaces. 6: 739-44. PMID 24386910 DOI: 10.1021/Am404423K  0.547
2014 Wang G, Jiu T, Sun C, Li J, Li P, Lu F, Fang J. Highly efficient organic photovoltaics via incorporation of solution-processed cesium stearate as the cathode interfacial layer. Acs Applied Materials & Interfaces. 6: 833-8. PMID 24364568 DOI: 10.1021/Am403829K  0.491
2014 Sun C, Li X, Wang G, Li P, Zhang W, Jiu T, Jiang N, Fang J. Highly efficient inverted polymer solar cells using fullerene derivative modified TiO2 nanorods as the buffer layer Rsc Advances. 4: 19529. DOI: 10.1039/C4Ra02254H  0.502
2014 Hu Z, Li X, Zhang W, Liang A, Ye D, Liu Z, Liu J, Liu Y, Fang J. Synthesis and photovoltaic properties of solution-processable star-shaped small molecules with triphenylamine as the core and alkyl cyanoacetate or 3-ethylrhodanine as the end-group Rsc Advances. 4: 5591. DOI: 10.1039/C3Ra44145H  0.4
2014 Wang G, Jiu T, Tang G, Li J, Li P, Song X, Lu F, Fang J. Interface Modification of ZnO-Based Inverted PTB7:PC71BM Organic Solar Cells by Cesium Stearate and Simultaneous Enhancement of Device Parameters Acs Sustainable Chemistry & Engineering. 2: 1331-1337. DOI: 10.1021/Sc5001447  0.512
2014 Li P, Li X, Sun C, Wang G, Li J, Jiu T, Fang J. Performance enhancement of inverted polymer solar cells with fullerene ester derivant-modified ZnO film as cathode buffer layer Solar Energy Materials and Solar Cells. 126: 36-41. DOI: 10.1016/J.Solmat.2014.03.038  0.476
2014 Wang G, Jiu T, Li P, Li J, Sun C, Lu F, Fang J. Preparation and characterization of MoO3 hole-injection layer for organic solar cell fabrication and optimization Solar Energy Materials and Solar Cells. 120: 603-609. DOI: 10.1016/J.Solmat.2013.10.002  0.486
2014 Zhang W, Min C, Zhang Q, Li X, Fang J. Zwitterionic ammonium and neutral amino molecules as cathode interlayer for inverted polymer solar cells Organic Electronics. 15: 3632-3638. DOI: 10.1016/J.Orgel.2014.10.012  0.513
2014 Wang G, Jiu T, Li P, Li J, Sun C, Lu F, Fang J. In situ growth of columnar MoO3 buffer layer for organic photovoltaic applications Organic Electronics. 15: 29-34. DOI: 10.1016/J.Orgel.2013.10.015  0.423
2014 Zhang W, Wu Y, Bao Q, Gao F, Fang J. Morphological Control for Highly Efficient Inverted Polymer Solar Cells Via the Backbone Design of Cathode Interlayer Materials Advanced Energy Materials. 4: 1400359. DOI: 10.1002/Aenm.201400359  0.53
2013 Grancini G, Sai Santosh Kumar R, Maiuri M, Fang J, Huck WT, Alcocer MJ, Lanzani G, Cerullo G, Petrozza A, Snaith HJ. Panchromatic "Dye-Doped" Polymer Solar Cells: From Femtosecond Energy Relays to Enhanced Photo-Response. The Journal of Physical Chemistry Letters. 4: 442-7. PMID 26281738 DOI: 10.1021/Jz302150Q  0.505
2013 Wu Y, Zhang W, Li X, Min C, Jiu T, Zhu Y, Dai N, Fang J. Solution-processed hybrid cathode interlayer for inverted organic solar cells. Acs Applied Materials & Interfaces. 5: 10428-32. PMID 24138511 DOI: 10.1021/Am404053E  0.406
2013 Li X, Zhang W, Wu Y, Min C, Fang J. Solution-processed MoS(x) as an efficient anode buffer layer in organic solar cells. Acs Applied Materials & Interfaces. 5: 8823-7. PMID 24018132 DOI: 10.1021/Am402105D  0.534
2013 Min C, Shi C, Zhang W, Jiu T, Chen J, Ma D, Fang J. A small-molecule zwitterionic electrolyte without a π-delocalized unit as a charge-injection layer for high-performance PLEDs. Angewandte Chemie (International Ed. in English). 52: 3417-20. PMID 23420809 DOI: 10.1002/Anie.201209959  0.584
2013 Li X, Zhang W, Wu Y, Min C, Fang J. High performance polymer solar cells with a polar fullerene derivative as the cathode buffer layer Journal of Materials Chemistry A. 1: 12413. DOI: 10.1039/C3Ta12875J  0.504
2013 Ye D, Li X, Yan L, Zhang W, Hu Z, Liang Y, Fang J, Wong W, Wang X. Dithienosilole-bridged small molecules with different alkyl group substituents for organic solar cells exhibiting high open-circuit voltage Journal of Materials Chemistry A. 1: 7622. DOI: 10.1039/C3Ta11257H  0.428
2013 Kumar A, Pace G, Bakulin AA, Fang J, Ho PKH, Huck WTS, Friend RH, Greenham NC. Donor-acceptor interface modification by zwitterionic conjugated polyelectrolytes in polymer photovoltaics Energy and Environmental Science. 6: 1589-1596. DOI: 10.1039/C3Ee00060E  0.415
2012 Tang S, Sandström A, Fang J, Edman L. A solution-processed trilayer electrochemical device: localizing the light emission for optimized performance. Journal of the American Chemical Society. 134: 14050-5. PMID 22862541 DOI: 10.1021/Ja3041916  0.409
2012 Slota JE, Elmalem E, Tu G, Watts B, Fang J, Oberhumer PM, Friend RH, Huck WTS. Oligomeric compatibilizers for control of phase separation in conjugated polymer blend films Macromolecules. 45: 1468-1475. DOI: 10.1021/Ma201523M  0.346
2011 Fang J, Wallikewitz BH, Gao F, Tu G, Müller C, Pace G, Friend RH, Huck WT. Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes. Journal of the American Chemical Society. 133: 683-5. PMID 21171591 DOI: 10.1021/Ja108541Z  0.556
2011 Chen Z, Fang J, Gao F, Brenner TJK, Banger KK, Wang X, Huck WTS, Sirringhaus H. Enhanced charge transport by incorporating additional thiophene units in the poly(fluorene-thienyl-benzothiadiazole) polymer Organic Electronics: Physics, Materials, Applications. 12: 461-471. DOI: 10.1016/J.Orgel.2010.12.009  0.522
2010 Driscoll K, Fang J, Humphry-Baker N, Torres T, Huck WT, Snaith HJ, Friend RH. Enhanced photoresponse in solid-state excitonic solar cells via resonant energy transfer and cascaded charge transfer from a secondary absorber. Nano Letters. 10: 4981-8. PMID 21062010 DOI: 10.1021/Nl103087S  0.414
2009 Fang J, Matyba P, Edman L. Light-Emitting Electrochemical Cells: The Design and Realization of Flexible, Long-Lived Light-Emitting Electrochemical Cells (Adv. Funct. Mater. 16/2009) Advanced Functional Materials. 19: NA-NA. DOI: 10.1002/Adfm.200990071  0.359
2009 Fang J, Matyba P, Edman L. The Design and Realization of Flexible, Long-Lived Light-Emitting Electrochemical Cells Advanced Functional Materials. 19: 2671-2676. DOI: 10.1002/Adfm.200900479  0.423
2008 Fang J, Matyba P, Robinson ND, Edman L. Identifying and alleviating electrochemical side-reactions in light-emitting electrochemical cells. Journal of the American Chemical Society. 130: 4562-8. PMID 18336026 DOI: 10.1021/Ja7113294  0.381
2008 Robinson ND, Fang J, Matyba P, Edman L. Electrochemical doping during light emission in polymer light-emitting electrochemical cells Physical Review B - Condensed Matter and Materials Physics. 78. DOI: 10.1103/Physrevb.78.245202  0.406
2008 Fang J, Yang Y, Edman L. Understanding the operation of light-emitting electrochemical cells Applied Physics Letters. 93: 063503. DOI: 10.1063/1.2969034  0.378
2008 Wang B, Fang J, Li B, You H, Ma D, Hong Z, Li W, Su Z. Soluble dendrimers europium(III) β-diketonate complex for organic memory devices Thin Solid Films. 516: 3123-3127. DOI: 10.1016/J.Tsf.2007.07.194  0.375
2007 Lu W, You H, Fang J, Ma D. Improvement of amplified spontaneous emission performance by doping tris(8-hydroxyquinoline) aluminum (Alq3) in dye-doped polymer thin films. Applied Optics. 46: 2320-4. PMID 17415402 DOI: 10.1364/Ao.46.002320  0.534
2007 You H, Li H, Fang J, Wang Q, Wang L, Ma D. Improved efficiency by doping blue iridium (III) complex in europium complex-based light-emitting diodes Journal of Physics D: Applied Physics. 40: 1363-1367. DOI: 10.1088/0022-3727/40/5/009  0.599
2007 Wang Y, Wang L, Zhu X, Ru J, Huang W, Fang J, Ma D. Efficient electroluminescent tertiary europium(III) β-diketonate complex with functional 2,2′-bipyridine ligand Synthetic Metals. 157: 165-169. DOI: 10.1016/J.Synthmet.2006.12.008  0.537
2007 You H, Fang J, Wang L, Zhu X, Huang W, Ma D. Efficient red organic light-emitting diodes based on a dinuclear europium complex Optical Materials. 29: 1514-1517. DOI: 10.1016/J.Optmat.2006.07.014  0.439
2007 Fang J, You H, Gao J, Lu W, Ma D. Ligand effect on the performance of organic light-emitting diodes based on europium complexes Journal of Luminescence. 124: 157-161. DOI: 10.1016/J.Jlumin.2006.02.018  0.526
2007 You H, Fang J, Gao J, Ma D. Improved efficiency of organic light-emitting diodes based on a europium complex by fluorescent dye Journal of Luminescence. 122: 687-689. DOI: 10.1016/J.Jlumin.2006.01.260  0.475
2006 Fang J, You H, Chen J, Lin J, Ma D. Memory devices based on lanthanide (Sm3+, Eu3+, Gd3+) complexes. Inorganic Chemistry. 45: 3701-4. PMID 16634604 DOI: 10.1021/Ic051783Y  0.586
2006 Fang J, Chan Choy C, Ma D, Ou EC. High-efficiency spin-coated organic light-emitting diodes based on a europium complex Thin Solid Films. 515: 2419-2422. DOI: 10.1016/J.Tsf.2006.05.031  0.557
2006 You H, Fang J, Xuan Y, Ma D. Highly efficient red electroluminescence from stacked organic light-emitting devices based on a europium complex Materials Science and Engineering: B. 131: 252-255. DOI: 10.1016/J.Mseb.2006.04.025  0.581
2005 Gao J, You H, Qin Z, Fang J, Ma D, Zhu X, Huang W. High efficiency polymer electrophosphorescent light-emitting diodes Semiconductor Science and Technology. 20: 805-808. DOI: 10.1088/0268-1242/20/8/029  0.464
2005 Gao J, You H, Fang J, Ma D, Wang L, Jing X, Wang F. Pure red electrophosphorescent organic light-emitting diodes based on a new iridium complex Synthetic Metals. 155: 168-171. DOI: 10.1016/J.Synthmet.2005.07.344  0.532
2004 Fang J, Ma D. 17.4: Improved Efficiency by a Fluorescent Sensitizer in Red Organic Light-emitting Devices based on a Europium Complex Sid Symposium Digest of Technical Papers. 35: 793. DOI: 10.1889/1.1825797  0.527
2004 Fang J, Ma D. Erratum: “Efficient red organic light-emitting devices based on a europium complex” [Appl. Phys. Lett. 83, 4041 (2003)] Applied Physics Letters. 85: 5470-5470. DOI: 10.1063/1.1821650  0.509
2004 Zhu X, Wang L, Ru J, Huang W, Fang J, Ma D. An efficient electroluminescent (2,2′-bipyridine mono N-oxide) europium(iii) β-diketonate complex J. Mater. Chem.. 14: 2732-2734. DOI: 10.1039/B407184K  0.555
2004 Fang J, You H, Gao J, Ma D. Improved efficiency by a fluorescent dye in red organic light-emitting devices based on a europium complex Chemical Physics Letters. 392: 11-16. DOI: 10.1016/J.Cplett.2004.05.040  0.429
2003 Fang J, Ma D. Efficient red organic light-emitting devices based on a europium complex Applied Physics Letters. 83: 4041-4043. DOI: 10.1063/1.1626022  0.576
Show low-probability matches.