Estevam Rafael Hruschka - Publications

Affiliations: 
Departament of Computation Federal University of São Carlos 

16 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2016 Santos EBd, Hruschka ER, Ebecken NFF. Score Metrics for Learning Bayesian Networks used as Fitness Function in a Genetic Algorithm Chembiochem. 1-8. DOI: 10.21528/Cbic2011-38.2  0.414
2016 Silva NFFd, Coletta LFS, Hruschka ER, Hruschka ER. Using unsupervised information to improve semi-supervised tweet sentiment classification Information Sciences. 355: 348-365. DOI: 10.1016/J.Ins.2016.02.002  0.468
2015 Mitchell T, Cohen W, Hruschka E, Talukdar P, Betteridge J, Carlson A, Dalvi B, Gardner M, Kisiel. B, Krishnamurthy J, Lao N, Mazaitis K, Mohamed T, Nakashole N, Platanios E, et al. Never-Ending Learning Proceedings of the National Conference On Artificial Intelligence. 3: 2302-2310. DOI: 10.1145/3191513  0.378
2014 Dos Santos EB, Ebecken NF, Hruschka ER, Elkamel A, Madhuranthakam CM. Bayesian classifiers applied to the Tennessee Eastman process. Risk Analysis : An Official Publication of the Society For Risk Analysis. 34: 485-97. PMID 24117732 DOI: 10.1111/Risa.12112  0.436
2014 Amaral LRD, Hruschka ER. Transgenic: An evolutionary algorithm operator Neurocomputing. 127: 104-113. DOI: 10.1016/J.Neucom.2013.08.037  0.357
2013 Nicoletti MC, Lisboa FOSS, Hruschka ER. Automatic Learning of Temporal Relations Under the Closed World Assumption Fundamenta Informaticae. 124: 133-151. DOI: 10.3233/Fi-2013-828  0.38
2013 Hruschka ER, Duarte MC, Nicoletti MC. Coupling as Strategy for Reducing Concept-Drift in Never-ending Learning Environments Fundamenta Informaticae. 124: 47-61. DOI: 10.3233/Fi-2013-824  0.44
2011 Hruschka ER, Hruschka ER, Ebecken NEF. A Bayesian imputation method for a clustering genetic algorithm Journal of Computational Methods in Sciences and Engineering Archive. 11: 173-183. DOI: 10.3233/Jcm-2011-0362  0.364
2009 Hruschka ER, Garcia AJT, Hruschka ER, Ebecken NFF. On the influence of imputation in classification: practical issues Journal of Experimental and Theoretical Artificial Intelligence. 21: 43-58. DOI: 10.1080/09528130802246602  0.359
2009 Bressan GM, Oliveira VA, Hruschka ER, Nicoletti MC. Using Bayesian networks with rule extraction to infer the risk of weed infestation in a corn-crop Engineering Applications of Artificial Intelligence. 22: 579-592. DOI: 10.1016/J.Engappai.2009.03.006  0.405
2007 Hruschka ER, Galvao SDCdO. Fast Conditional Independence-based Bayesian Classifier Journal of Computing Science and Engineering. 1: 162-176. DOI: 10.5626/Jcse.2007.1.2.162  0.476
2007 Nicoletti MdC, Figueira LB, Hruschka ER. Transferring neural network based knowledge into an exemplar-based learner Neural Computing and Applications. 16: 257-265. DOI: 10.1007/S00521-007-0088-8  0.434
2006 Hruschka ER, Hruschka ER, Covões TF, Ebecken NFF. Bayesian Feature Selection for Clustering Problems Journal of Information & Knowledge Management. 5: 315-327. DOI: 10.1142/S0219649206001578  0.431
2004 Hruschka ER, Hruschka ER, Ebecken NFF. Feature Selection by Bayesian Networks Lecture Notes in Computer Science. 370-379. DOI: 10.1007/978-3-540-24840-8_26  0.426
2003 Hruschka ER, Ebecken NFF. A feature selection Bayesian approach for a clustering genetic algorithm Wit Transactions On Information and Communication Technologies. 29. DOI: 10.2495/Data030181  0.415
2002 Hruschka ER, Ebecken NFF. Ordering attributes for missing values prediction and data classification Wit Transactions On Information and Communication Technologies. 28. DOI: 10.2495/Data020571  0.467
Show low-probability matches.