Paul A. Lindahl, Ph.D. - Publications

Affiliations: 
1988- Texas A & M University, College Station, TX, United States 
Area:
Biochemistry

127 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Shepherd RE, Kreinbrink AC, Njimoh CL, Vali SW, Lindahl PA. Yeast Mitochondria Import Aqueous Fe and, When Activated for Iron-Sulfur Cluster Assembly, Export or Release Low-Molecular-Mass Iron and Also Export Iron That Incorporates into Cytosolic Proteins. Journal of the American Chemical Society. 145: 13556-13569. PMID 37339084 DOI: 10.1021/jacs.2c13439  0.519
2023 Brawley HN, Kreinbrink AC, Hierholzer JD, Vali SW, Lindahl PA. Labile Iron Pool of Isolated Cytosol Likely Includes Fe-ATP and Fe-Citrate but not Fe-Glutathione or Aqueous Fe. Journal of the American Chemical Society. 145: 2104-2117. PMID 36661842 DOI: 10.1021/jacs.2c06625  0.523
2022 Vali SW, Lindahl PA. Low-temperature Mössbauer spectroscopy of organs from Fe-enriched HFE hemochromatosis mice: an iron-dependent threshold for generating hemosiderin. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. PMID 36512071 DOI: 10.1007/s00775-022-01975-y  0.432
2022 Vali SW, Lindahl PA. Might non-transferrin-bound iron in blood plasma and sera be a non-proteinaceous high-molecular-mass Fe aggregate? The Journal of Biological Chemistry. 102667. PMID 36334631 DOI: 10.1016/j.jbc.2022.102667  0.449
2022 Lindahl PA, Vali SW. Mössbauer-based molecular-level decomposition of the Saccharomyces cerevisiae ironome, and preliminary characterization of isolated nuclei. Metallomics : Integrated Biometal Science. PMID 36214417 DOI: 10.1093/mtomcs/mfac080  0.396
2022 Fernandez S, Wofford JD, Shepherd RE, Vali SW, Dancis A, Lindahl PA. Yeast cells depleted of the frataxin homolog Yfh1 redistribute cellular iron: Studies using Mössbauer spectroscopy and mathematical modeling. The Journal of Biological Chemistry. 298: 101921. PMID 35413285 DOI: 10.1016/j.jbc.2022.101921  0.469
2021 Hyun SM, Reid KA, Vali SW, Lindahl PA, Powers DC. Cis-Divacant Octahedral Fe(II) in a Dimensionally Reduced Family of 2-(Pyridin-2-yl)pyrrolide Complexes. Inorganic Chemistry. PMID 34590844 DOI: 10.1021/acs.inorgchem.1c02240  0.333
2021 Drake HF, Xiao Z, Day GS, Vali SW, Chen W, Wang Q, Huang Y, Yan TH, Kuszynski JE, Lindahl PA, Ryder MR, Zhou HC. Thermal decarboxylation for the generation of hierarchical porosity in isostructural metal-organic frameworks containing open metal sites. Materials Advances. 2: 5487-5493. PMID 34458847 DOI: 10.1039/d1ma00163a  0.429
2021 Vali SW, Haja DK, Brand RA, Adams MWW, Lindahl PA. The Pyrococcus furiosus ironome is dominated by [FeS] clusters or thioferrate-like iron depending on the availability of elemental sulfur. The Journal of Biological Chemistry. 100710. PMID 33930466 DOI: 10.1016/j.jbc.2021.100710  0.502
2020 Kim JE, Vali SW, Nguyen TQ, Dancis A, Lindahl PA. Mössbauer and LC-ICP-MS investigation of iron trafficking between vacuoles and mitochondria in Vma2Δ . The Journal of Biological Chemistry. PMID 33268384 DOI: 10.1074/jbc.RA120.015907  0.418
2020 Khan D, Lee D, Gulten G, Aggarwal A, Wofford J, Krieger I, Tripathi A, Patrick JW, Eckert DM, Laganowsky A, Sacchettini J, Lindahl P, Bankaitis VA. A Sec14-like phosphatidylinositol transfer protein paralog defines a novel class of heme-binding proteins. Elife. 9. PMID 32780017 DOI: 10.7554/Elife.57081  0.398
2020 Nguyen TQ, Kim JE, Brawley HN, Lindahl PA. Chromatographic detection of low-molecular-mass metal complexes in the cytosol of Saccharomyces cerevisiae. Metallomics : Integrated Biometal Science. PMID 32301942 DOI: 10.1039/C9Mt00312F  0.302
2019 Soma S, Morgada MN, Naik MT, Boulet A, Roesler AA, Dziuba N, Ghosh A, Yu Q, Lindahl PA, Ames JB, Leary SC, Vila AJ, Gohil VM. COA6 Is Structurally Tuned to Function as a Thiol-Disulfide Oxidoreductase in Copper Delivery to Mitochondrial Cytochrome c Oxidase. Cell Reports. 29: 4114-4126.e5. PMID 31851937 DOI: 10.1016/J.Celrep.2019.11.054  0.304
2019 Dziuba N, Hardy J, Lindahl PA. Low-molecular-mass iron complexes in blood plasma of iron-deficient pigs do not originate directly from nutrient iron. Metallomics : Integrated Biometal Science. PMID 31603444 DOI: 10.1039/C9Mt00152B  0.517
2019 Drake HF, Day GS, Vali SW, Xiao Z, Banerjee S, Li J, Joseph EA, Kuszynski JE, Perry ZT, Kirchon A, Ozdemir OK, Lindahl PA, Zhou HC. The thermally induced decarboxylation mechanism of a mixed-oxidation state carboxylate-based iron metal-organic framework. Chemical Communications (Cambridge, England). PMID 31565709 DOI: 10.1039/C9Cc04555D  0.534
2019 Lindahl PA. A comprehensive mechanistic model of iron metabolism in Saccharomyces cerevisiae. Metallomics : Integrated Biometal Science. PMID 31531508 DOI: 10.1039/C9Mt00199A  0.411
2019 Nguyen TQ, Dziuba N, Lindahl PA. Isolated Saccharomyces cerevisiae vacuoles contain low-molecular-mass transition-metal polyphosphate complexes. Metallomics : Integrated Biometal Science. PMID 31210222 DOI: 10.1039/C9Mt00104B  0.322
2019 Wofford JD, Lindahl PA. A mathematical model of iron import and trafficking in wild-type and Mrs3/4ΔΔ yeast cells. Bmc Systems Biology. 13: 23. PMID 30791941 DOI: 10.1186/S12918-019-0702-2  0.475
2018 Wofford JD, Bolaji N, Dziuba N, Outten FW, Lindahl PA. Evidence that a respiratory shield in protects a low-molecular-mass Fe pool from O-dependent oxidation. The Journal of Biological Chemistry. PMID 30337367 DOI: 10.1074/Jbc.Ra118.005233  0.555
2018 Dziuba N, Hardy J, Lindahl PA. Low-molecular-mass iron in healthy blood plasma is not predominately ferric citrate. Metallomics : Integrated Biometal Science. PMID 29808889 DOI: 10.1039/C8Mt00055G  0.438
2018 Pandey A, Pain J, Dziuba N, Pandey AK, Dancis A, Lindahl PA, Pain D. Mitochondria Export Sulfur Species Required for Cytosolic tRNA Thiolation. Cell Chemical Biology. PMID 29706592 DOI: 10.1016/J.Chembiol.2018.04.002  0.368
2018 Moore MJ, Wofford JD, Dancis A, Lindahl PA. Recovery of mrs3Δmrs4Δ Saccharomyces cerevisiae Cells under Iron-Sufficient Conditions and the Role of Fe580. Biochemistry. PMID 29228768 DOI: 10.1021/Acs.Biochem.7B01034  0.552
2017 Kuppuswamy S, Wofford JD, Joseph C, Xie ZL, Ali AK, Lynch VM, Lindahl PA, Rose MJ. Structures, Interconversions, and Spectroscopy of Iron Carbonyl Clusters with an Interstitial Carbide: Localized Metal Center Reduction by Overall Cluster Oxidation. Inorganic Chemistry. PMID 28605580 DOI: 10.1021/acs.inorgchem.7b01386  0.331
2017 Kuppuswamy S, Wofford JD, Joseph C, Xie ZL, Ali AK, Lynch VM, Lindahl PA, Rose MJ. Structures, Interconversions, and Spectroscopy of Iron Carbonyl Clusters with an Interstitial Carbide: Localized Metal Center Reduction by Overall Cluster Oxidation. Inorganic Chemistry. PMID 28441025 DOI: 10.1021/Acs.Inorgchem.7B00741  0.611
2017 Wofford JD, Chakrabarti M, Lindahl PA. Mössbauer Spectra of Mouse Hearts reveal age-dependent changes in mitochondrial and ferritin iron levels. The Journal of Biological Chemistry. PMID 28202542 DOI: 10.1074/Jbc.M117.777201  0.676
2016 Lindahl PA, Moore MJ. Labile Low-Molecular-Mass Metal Complexes in Mitochondria: Trials and Tribulations of a Burgeoning Field. Biochemistry. PMID 27433847 DOI: 10.1021/Acs.Biochem.6B00216  0.367
2016 Wofford JD, Park J, McCormick SP, Chakrabarti M, Lindahl PA. Ferric ions accumulate in the walls of metabolically inactivating Saccharomyces cerevisiae cells and are reductively mobilized during reactivation. Metallomics : Integrated Biometal Science. PMID 27188213 DOI: 10.1039/C6Mt00070C  0.729
2015 Wofford JD, Lindahl PA. Mitochondrial Iron-Sulfur Cluster Activity and Cytosolic Iron Regulate Iron Traffic in Saccharomyces cerevisiae. The Journal of Biological Chemistry. 290: 26968-77. PMID 26306041 DOI: 10.1074/Jbc.M115.676668  0.558
2015 McCormick SP, Moore MJ, Lindahl PA. Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria. Biochemistry. 54: 3442-53. PMID 26018429 DOI: 10.1021/Bi5015437  0.472
2015 Fox NG, Das D, Chakrabarti M, Lindahl PA, Barondeau DP. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex. Biochemistry. PMID 26016518 DOI: 10.1021/Bi5014497  0.842
2015 Fox NG, Chakrabarti M, McCormick SP, Lindahl PA, Barondeau DP. The Human Iron-Sulfur Assembly Complex Catalyzes the Synthesis of [2Fe-2S] Clusters on ISCU2 That Can Be Transferred to Acceptor Molecules. Biochemistry. 54: 3871-9. PMID 26016389 DOI: 10.1021/Bi5014485  0.84
2015 Chakrabarti M, Barlas MN, McCormick SP, Lindahl LS, Lindahl PA. Kinetics of iron import into developing mouse organs determined by a pup-swapping method. The Journal of Biological Chemistry. 290: 520-8. PMID 25371212 DOI: 10.1074/Jbc.M114.606731  0.687
2015 Chakrabarti M, Cockrell AL, Park J, McCormick SP, Lindahl LS, Lindahl PA. Speciation of iron in mouse liver during development, iron deficiency, IRP2 deletion and inflammatory hepatitis. Metallomics : Integrated Biometal Science. 7: 93-101. PMID 25325718 DOI: 10.1039/C4Mt00215F  0.717
2015 Fox NG, Chakrabarti M, McCormick SP, Lindahl PA, Barondeau DP. The Human Iron-Sulfur Assembly Complex Catalyzes the Synthesis of [2Fe-2S] Clusters on ISCU2 That Can Be Transferred to Acceptor Molecules Biochemistry. 54: 3871-3879. DOI: 10.1021/bi5014485  0.819
2014 Park J, McCormick SP, Cockrell AL, Chakrabarti M, Lindahl PA. High-spin ferric ions in Saccharomyces cerevisiae vacuoles are reduced to the ferrous state during adenine-precursor detoxification. Biochemistry. 53: 3940-51. PMID 24919141 DOI: 10.1021/Bi500148Y  0.734
2014 Cockrell A, McCormick SP, Moore MJ, Chakrabarti M, Lindahl PA. Mössbauer, EPR, and modeling study of iron trafficking and regulation in Δccc1 and CCC1-up Saccharomyces cerevisiae. Biochemistry. 53: 2926-40. PMID 24785783 DOI: 10.1021/Bi500002N  0.725
2013 Park J, McCormick SP, Chakrabarti M, Lindahl PA. The lack of synchronization between iron uptake and cell growth leads to iron overload in Saccharomyces cerevisiae during post-exponential growth modes. Biochemistry. 52: 9413-25. PMID 24344915 DOI: 10.1021/Bi4010304  0.718
2013 Jhurry ND, Chakrabarti M, McCormick SP, Gohil VM, Lindahl PA. Mössbauer study and modeling of iron import and trafficking in human jurkat cells. Biochemistry. 52: 7926-42. PMID 24180611 DOI: 10.1021/Bi401015T  0.722
2013 Park J, McCormick SP, Chakrabarti M, Lindahl PA. Insights into the iron-ome and manganese-ome of Δmtm1 Saccharomyces cerevisiae mitochondria. Metallomics : Integrated Biometal Science. 5: 656-72. PMID 23598994 DOI: 10.1039/C3Mt00041A  0.726
2013 McCormick SP, Chakrabarti M, Cockrell AL, Park J, Lindahl LS, Lindahl PA. Low-molecular-mass metal complexes in the mouse brain. Metallomics : Integrated Biometal Science. 5: 232-41. PMID 23443205 DOI: 10.1039/C3Mt00009E  0.578
2013 Holmes-Hampton GP, Jhurry ND, McCormick SP, Lindahl PA. Iron content of Saccharomyces cerevisiae cells grown under iron-deficient and iron-overload conditions. Biochemistry. 52: 105-14. PMID 23253189 DOI: 10.1021/Bi3015339  0.818
2012 Holmes-Hampton GP, Chakrabarti M, Cockrell AL, McCormick SP, Abbott LC, Lindahl LS, Lindahl PA. Changing iron content of the mouse brain during development. Metallomics : Integrated Biometal Science. 4: 761-70. PMID 22810488 DOI: 10.1039/C2Mt20086D  0.835
2012 Jhurry ND, Chakrabarti M, McCormick SP, Holmes-Hampton GP, Lindahl PA. Biophysical investigation of the ironome of human jurkat cells and mitochondria. Biochemistry. 51: 5276-84. PMID 22726227 DOI: 10.1021/Bi300382D  0.848
2012 Schilter D, Nilges MJ, Chakrabarti M, Lindahl PA, Rauchfuss TB, Stein M. Mixed-valence nickel-iron dithiolate models of the [NiFe]-hydrogenase active site. Inorganic Chemistry. 51: 2338-48. PMID 22304696 DOI: 10.1021/Ic202329Y  0.69
2012 Lindahl PA. Metal-metal bonds in biology. Journal of Inorganic Biochemistry. 106: 172-8. PMID 22119810 DOI: 10.1016/J.Jinorgbio.2011.08.012  0.447
2011 Cockrell AL, Holmes-Hampton GP, McCormick SP, Chakrabarti M, Lindahl PA. Mössbauer and EPR study of iron in vacuoles from fermenting Saccharomyces cerevisiae. Biochemistry. 50: 10275-83. PMID 22047049 DOI: 10.1021/Bi2014954  0.838
2011 Kamat SS, Holmes-Hampton GP, Bagaria A, Kumaran D, Tichy SE, Gheyi T, Zheng X, Bain K, Groshong C, Emtage S, Sauder JM, Burley SK, Swaminathan S, Lindahl PA, Raushel FM. The catalase activity of diiron adenine deaminase. Protein Science : a Publication of the Protein Society. 20: 2080-94. PMID 21998098 DOI: 10.1002/Pro.748  0.776
2011 Miao R, Holmes-Hampton GP, Lindahl PA. Biophysical investigation of the iron in Aft1-1(up) and Gal-YAH1 Saccharomyces cerevisiae. Biochemistry. 50: 2660-71. PMID 21361388 DOI: 10.1021/Bi102015S  0.846
2011 Lindahl PA, Holmes-Hampton GP. Biophysical probes of iron metabolism in cells and organelles. Current Opinion in Chemical Biology. 15: 342-6. PMID 21282072 DOI: 10.1016/J.Cbpa.2011.01.007  0.808
2011 Kamat SS, Bagaria A, Kumaran D, Holmes-Hampton GP, Fan H, Sali A, Sauder JM, Burley SK, Lindahl PA, Swaminathan S, Raushel FM. Catalytic mechanism and three-dimensional structure of adenine deaminase. Biochemistry. 50: 1917-27. PMID 21247091 DOI: 10.1021/Bi101788N  0.777
2010 Garber Morales J, Holmes-Hampton GP, Miao R, Guo Y, Münck E, Lindahl PA. Biophysical characterization of iron in mitochondria isolated from respiring and fermenting yeast. Biochemistry. 49: 5436-44. PMID 20536189 DOI: 10.1021/Bi100558Z  0.851
2010 Holmes-Hampton GP, Miao R, Garber Morales J, Guo Y, Münck E, Lindahl PA. A nonheme high-spin ferrous pool in mitochondria isolated from fermenting Saccharomyces cerevisiae. Biochemistry. 49: 4227-34. PMID 20408527 DOI: 10.1021/Bi1001823  0.836
2009 Lindahl PA. Nickel-carbon bonds in acetyl-coenzyme a synthases/carbon monoxide dehydrogenases. Metal Ions in Life Sciences. 6: 133-50. PMID 20877794 DOI: 10.1039/9781847559333-00133  0.403
2009 Miao R, Kim H, Koppolu UM, Ellis EA, Scott RA, Lindahl PA. Biophysical characterization of the iron in mitochondria from Atm1p-depleted Saccharomyces cerevisiae. Biochemistry. 48: 9556-68. PMID 19761223 DOI: 10.1021/Bi901110N  0.749
2009 Volbeda A, Darnault C, Tan X, Lindahl PA, Fontecilla-Camps JC. Novel domain arrangement in the crystal structure of a truncated acetyl-CoA synthase from Moorella thermoacetica. Biochemistry. 48: 7916-26. PMID 19650626 DOI: 10.1021/Bi9003952  0.402
2009 Lindahl PA, Morales JG, Miao R, Holmes-Hampton G. Chapter 15 Isolation of Saccharomyces cerevisiae mitochondria for Mössbauer, EPR, and electronic absorption spectroscopic analyses. Methods in Enzymology. 456: 267-85. PMID 19348894 DOI: 10.1016/S0076-6879(08)04415-7  0.817
2008 Miao R, Martinho M, Morales JG, Kim H, Ellis EA, Lill R, Hendrich MP, Münck E, Lindahl PA. EPR and Mössbauer spectroscopy of intact mitochondria isolated from Yah1p-depleted Saccharomyces cerevisiae. Biochemistry. 47: 9888-99. PMID 18717590 DOI: 10.1021/Bi801047Q  0.793
2008 Tan X, Martinho M, Stubna A, Lindahl PA, Münck E. Mossbauer evidence for an exchange-coupled {[Fe4S4]1+ Nip1+} A-cluster in isolated alpha subunits of acetyl-coenzyme A synthase/carbon monoxide dehydrogenase. Journal of the American Chemical Society. 130: 6712-3. PMID 18459773 DOI: 10.1021/Ja801981H  0.802
2008 Lindahl PA. Implications of a carboxylate-bound C-cluster structure of carbon monoxide dehydrogenase. Angewandte Chemie (International Ed. in English). 47: 4054-6. PMID 18404747 DOI: 10.1002/Anie.200800223  0.322
2008 Tan X, Lindahl PA. Tunnel mutagenesis and Ni-dependent reduction and methylation of the alpha subunit of acetyl coenzyme A synthase/carbon monoxide dehydrogenase. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 13: 771-8. PMID 18365259 DOI: 10.1007/S00775-008-0363-X  0.423
2007 Tan X, Kagiampakis I, Surovtsev IV, Demeler B, Lindahl PA. Nickel-dependent oligomerization of the alpha subunit of acetyl-coenzyme a synthase/carbon monoxide dehydrogenase. Biochemistry. 46: 11606-13. PMID 17887777 DOI: 10.1021/Bi7014663  0.331
2007 Hudder BN, Morales JG, Stubna A, Münck E, Hendrich MP, Lindahl PA. Electron paramagnetic resonance and Mössbauer spectroscopy of intact mitochondria from respiring Saccharomyces cerevisiae. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 12: 1029-53. PMID 17665226 DOI: 10.1007/S00775-007-0275-1  0.805
2007 Garber-Morales J, Miao R, Hudder BN, Stubna A, Münck E, Hendrich MP, Lindahl PA. 90 Biophysical probes of iron metabolism in mitochondria Mitochondrion. 7: 430. DOI: 10.1016/J.Mito.2007.08.094  0.752
2007 Lindahl PA, Graham DE. Acetyl-coenzyme A Synthases and Nickel-Containing Carbon Monoxide Dehydrogenases Nickel and Its Surprising Impact in Nature. 2: 357-415. DOI: 10.1002/9780470028131.ch9  0.309
2006 Tan X, Surovtsev IV, Lindahl PA. Kinetics of CO insertion and acetyl group transfer steps, and a model of the acetyl-CoA synthase catalytic mechanism. Journal of the American Chemical Society. 128: 12331-8. PMID 16967985 DOI: 10.1021/Ja0627702  0.356
2006 Bramlett MR, Stubna A, Tan X, Surovtsev IV, Münck E, Lindahl PA. Mössbauer and EPR study of recombinant acetyl-CoA synthase from Moorella thermoacetica. Biochemistry. 45: 8674-85. PMID 16834342 DOI: 10.1021/Bi060003+  0.79
2006 Tan X, Volbeda A, Fontecilla-Camps JC, Lindahl PA. Function of the tunnel in acetylcoenzyme A synthase/carbon monoxide dehydrogenase. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 11: 371-8. PMID 16502006 DOI: 10.1007/S00775-006-0086-9  0.429
2005 Tan X, Loke HK, Fitch S, Lindahl PA. The tunnel of acetyl-coenzyme a synthase/carbon monoxide dehydrogenase regulates delivery of CO to the active site. Journal of the American Chemical Society. 127: 5833-9. PMID 15839681 DOI: 10.1021/Ja043701V  0.675
2004 Feng J, Lindahl PA. Effect of sodium sulfide on Ni-containing carbon monoxide dehydrogenases. Journal of the American Chemical Society. 126: 9094-100. PMID 15264843 DOI: 10.1021/Ja048811G  0.458
2004 Lindahl PA. Acetyl-coenzyme A synthase: the case for a Ni(p)(0)-based mechanism of catalysis. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 9: 516-24. PMID 15221478 DOI: 10.1007/S00775-004-0564-X  0.49
2004 Tan X, Bramlett MR, Lindahl PA. Effect of Zn on acetyl coenzyme a synthase: evidence for a conformational change in the alpha subunit during catalysis. Journal of the American Chemical Society. 126: 5954-5. PMID 15137746 DOI: 10.1021/Ja039600Z  0.352
2004 Kim EJ, Feng J, Bramlett MR, Lindahl PA. Evidence for a proton transfer network and a required persulfide-bond-forming cysteine residue in Ni-containing carbon monoxide dehydrogenases. Biochemistry. 43: 5728-34. PMID 15134447 DOI: 10.1021/Bi036062U  0.378
2004 Webster CE, Darensbourg MY, Lindahl PA, Hall MB. Structures and Energetics of Models for the Active Site of Acetyl-Coenzyme A Synthase: Role of Distal and Proximal Metals in Catalysis Journal of the American Chemical Society. 126: 3410-3411. PMID 15025453 DOI: 10.1021/Ja038083H  0.32
2004 Maynard EL, Tan X, Lindahl PA. Autocatalytic activation of acetyl-CoA synthase. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 9: 316-22. PMID 15015040 DOI: 10.1007/S00775-004-0528-1  0.759
2004 Feng J, Lindahl PA. Carbon monoxide dehydrogenase from Rhodospirillum rubrum: effect of redox potential on catalysis. Biochemistry. 43: 1552-9. PMID 14769031 DOI: 10.1021/Bi0357199  0.408
2003 Bramlett MR, Tan X, Lindahl PA. Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper. Journal of the American Chemical Society. 125: 9316-7. PMID 12889960 DOI: 10.1021/Ja0352855  0.382
2003 Darnault C, Volbeda A, Kim EJ, Legrand P, Vernède X, Lindahl PA, Fontecilla-Camps JC. Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nature Structural Biology. 10: 271-9. PMID 12627225 DOI: 10.1038/Nsb912  0.454
2003 Loke HK, Lindahl PA. Identification and preliminary characterization of AcsF, a putative Ni-insertase used in the biosynthesis of acetyl-CoA synthase from Clostridium thermoaceticum. Journal of Inorganic Biochemistry. 93: 33-40. PMID 12538050 DOI: 10.1016/S0162-0134(02)00457-9  0.751
2003 Tan X, Sewell C, Yang Q, Lindahl PA. Reduction and methyl transfer kinetics of the alpha subunit from acetyl coenzyme a synthase. Journal of the American Chemical Society. 125: 318-9. PMID 12517128 DOI: 10.1021/Ja028442T  0.387
2002 Lindahl PA. Stoichiometric redox titrations of complex metalloenzymes. Methods in Enzymology. 354: 296-309. PMID 12418235 DOI: 10.1016/S0076-6879(02)54024-6  0.34
2002 Loke HK, Tan X, Lindahl PA. Genetic construction of truncated and chimeric metalloproteins derived from the alpha subunit of acetyl-CoA synthase from Clostridium thermoaceticum. Journal of the American Chemical Society. 124: 8667-72. PMID 12121109 DOI: 10.1021/Ja025924W  0.736
2002 Tan XS, Sewell C, Lindahl PA. Stopped-Flow Kinetics of Methyl Group Transfer between the Corrinoid-Iron-Sulfur Protein and Acetyl-Coenzyme A Synthase from Clostridium thermoaceticum. Journal of the American Chemical Society. 124: 6277-84. PMID 12033855 DOI: 10.1021/Ja016676R  0.333
2001 Maynard EL, Lindahl PA. Catalytic coupling of the active sites in acetyl-CoA synthase, a bifunctional CO-channeling enzyme. Biochemistry. 40: 13262-7. PMID 11683635 DOI: 10.1021/Bi015604+  0.74
2001 Lindahl PA, Chang B. The evolution of acetyl-CoA synthase Origins of Life and Evolution of the Biosphere. 31: 403-434. PMID 11599178 DOI: 10.1023/A:1011809430237  0.31
2001 Maynard EL, Sewell C, Lindahl PA. Kinetic mechanism of acetyl-CoA synthase: steady-state synthesis at variable Co/Co2 pressures. Journal of the American Chemical Society. 123: 4697-703. PMID 11457278 DOI: 10.1021/Ja004017T  0.71
2000 Loke HK, Bennett GN, Lindahl PA. Active acetyl-CoA synthase from Clostridium thermoaceticum obtained by cloning and heterologous expression of acsAB in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 97: 12530-5. PMID 11050160 DOI: 10.1073/Pnas.220404397  0.752
1999 Wilson BE, Lindahl PA. Equilibrium dialysis study and mechanistic implications of coenzyme A binding to acetyl-CoA synthase/carbon monoxide dehydrogenase from Clostridium thermoaceticum. Journal of Biological Inorganic Chemistry : Jbic : a Publication of the Society of Biological Inorganic Chemistry. 4: 742-8. PMID 10631605 DOI: 10.1007/S007750050346  0.357
1999 Fraser DM, Lindahl PA. Evidence for a proposed intermediate redox state in the CO/CO(2) active site of acetyl-CoA synthase (Carbon monoxide dehydrogenase) from Clostridium thermoaceticum. Biochemistry. 38: 15706-11. PMID 10625436 DOI: 10.1021/Bi990398F  0.342
1999 Fraser DM, Lindahl PA. Stoichiometric CO reductive titrations of acetyl-CoA synthase (Carbon monoxide dehydrogenase) from Clostridium thermoaceticum. Biochemistry. 38: 15697-705. PMID 10625435 DOI: 10.1021/Bi990397N  0.345
1999 Maynard EL, Lindahl PA. Evidence of a molecular tunnel connecting the active sites for Co2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum [2] Journal of the American Chemical Society. 121: 9221-9222. DOI: 10.1021/Ja992120G  0.754
1998 Russell WK, Lindahl PA. CO/CO2 potentiometric titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum and the effect of CO2 Biochemistry. 37: 10016-10026. PMID 9665707 DOI: 10.1021/Bi980149B  0.407
1998 Russell WK, Stålhandske CMV, Xia J, Scott RA, Lindahl PA. Spectroscopic, redox, and structural characterization of the Ni-labile and nonlabile forms of the acetyl-CoA synthase active site of carbon monoxide dehydrogenase Journal of the American Chemical Society. 120: 7502-7510. DOI: 10.1021/Ja981165Z  0.436
1998 DeRose VJ, Telser J, Anderson ME, Lindahl PA, Hoffman BM. A multinuclear ENDOR study of the C-cluster in CO dehydrogenase from Clostridium thermoaceticum: Evidence for H(x)O and histidine coordination to the [Fe4S4] center Journal of the American Chemical Society. 120: 8767-8776. DOI: 10.1021/Ja9731480  0.451
1997 Xia J, Hu Z, Popescu CV, Lindahl PA, Münck E. Mossbauer and EPR study of the Ni-activated α-subunit of carbon monoxide dehydrogenase from Clostridium thermoaceticum Journal of the American Chemical Society. 119: 8301-8312. DOI: 10.1021/Ja971025+  0.818
1997 Barondeau DP, Lindahl PA. Methylation of carbon monoxide dehydrogenase from Clostridium thermoaceticum and mechanism of acetyl coenzyme A synthesis Journal of the American Chemical Society. 119: 3959-3970. DOI: 10.1021/Ja963597K  0.724
1996 Anderson ME, Lindahl PA. Spectroscopic states of the CO oxidation/CO2 reduction active site of carbon monoxide dehydrogenase and mechanistic implications Biochemistry. 35: 8371-8380. PMID 8679595 DOI: 10.1021/Bi952902W  0.402
1996 Xia J, Sinclair JF, Baldwin TO, Lindahl PA. Carbon monoxide dehydrogenase from Clostridium thermoaceticum: Quaternary structure, stoichiometry of its SDS-induced dissociation, and characterization of the faster-migrating form Biochemistry. 35: 1965-1971. PMID 8639680 DOI: 10.1021/Bi9511853  0.454
1996 Spangler NJ, Lindahl PA, Bandarian V, Ludden PW. Spectroelectrochemical characterization of the metal centers in carbon monoxide dehydrogenase (CODH) and nickel-deficient CODH from Rhodospirillum rubrum Journal of Biological Chemistry. 271: 7973-7977. PMID 8626477 DOI: 10.1074/Jbc.271.14.7973  0.406
1996 Xia J, Lindahl PA. Assembly of an exchange-coupled [Ni:Fe4S4] cluster in the α metallosubunit of carbon monoxide dehydrogenase from Clostridium thermoaceticum with spectroscopic properties and CO-binding ability mimicking those of the acetyl-CoA synthase active site Journal of the American Chemical Society. 118: 483-484. DOI: 10.1021/Ja952845U  0.36
1996 Hu Z, Spangler NJ, Anderson ME, Xia J, Ludden PW, Lindahl PA, Münck E. Nature of the C-cluster in Ni-containing carbon monoxide dehydrogenases Journal of the American Chemical Society. 118: 830-844. DOI: 10.1021/Ja9528386  0.635
1995 Roberts LM, Lindahl PA. Stoichiometric reductive titrations of Desulfovibrio gigas hydrogenase Journal of the American Chemical Society. 117: 2565-2572. DOI: 10.1021/Ja00114A020  0.396
1995 Xia J, Hu E, Anderson ME, Barondeau DP, Russell WK, Sinclair J, Dong J, Wang S, Scott RA, Baldwin TO, Münck E, Lindahl PA. The nickel and iron-sulfur centers in carbon monoxide dehydrogenase Journal of Inorganic Biochemistry. 59: 634. DOI: 10.1016/0162-0134(95)97723-4  0.778
1995 Xia J, Dong J, Wang S, Scott RA, Lindahl PA. EXAFS, EPR, and electronic absorption spectroscopic study of the α metallosubunit of CO dehydrogenase from Clostridium thermoaceticum Journal of the American Chemical Society. 117: 7065-7070.  0.41
1994 Anderson ME, Lindahl PA. Organization of clusters and internal electron pathways in CO dehydrogenase from Clostridium thermoaceticum: Relevance to the mechanism of catalysis and cyanide inhibition Biochemistry. 33: 8702-8711. PMID 8038160 DOI: 10.1021/Bi00195A011  0.43
1994 Roberts LM, Lindahl PA. Analysis of oxidative titrations of Desulfovibrio gigas hydrogenase; implications for the catalytic mechanism Biochemistry. 33: 14339-14350. PMID 7947844 DOI: 10.1021/Bi00251A048  0.408
1994 Barondeau DP, Roberts LM, Lindahl PA. Stability of the Ni-C state and oxidative titrations of Desulfovibrio gigas hydrogenase monitored by EPR and electronic absorption spectroscopies Journal of the American Chemical Society. 116: 3442-3448. DOI: 10.1021/Ja00087A033  0.762
1993 Shin W, Lindahl PA. Low spin quantitation of NiFeC EPR signal from carbon monoxide dehydrogenase is not due to damage incurred during protein purification Biochimica Et Biophysica Acta (Bba)/Protein Structure and Molecular. 1161: 317-322. PMID 8381672 DOI: 10.1016/0167-4838(93)90231-F  0.379
1993 Chae MY, Omburo GA, Lindahl PA, Raushel FM. Antiferromagnetic coupling in the binuclear metal cluster of manganese-substituted phosphotriesterase Journal of the American Chemical Society. 115: 12173-12174. DOI: 10.1021/Ja00078A069  0.336
1993 Shin W, Anderson ME, Lindahl PA. Heterogeneous nickel environments in carbon monoxide dehydrogenase from Clostridium thermoaceticum Journal of the American Chemical Society. 115: 5522-5526. DOI: 10.1021/Ja00066A021  0.399
1993 Farmer PJ, Reibenspies JH, Lindahl PA, Darensbourg MY. Effects of sulfur site modification on the redox potentials of derivatives of [N,N′- Bis(2-mercaptoethyl)-1,5 -diazacyclooctanato] nickel(II) Journal of the American Chemical Society. 115: 4665-4674. DOI: 10.1021/Ja00064A030  0.333
1993 Barondeau DP, Roberts L, Lindahl PA. Oxidative titrations of Desulfovibrio gigas hydrogen monitored by EPR and electronic absorption spectroscopies Journal of Inorganic Biochemistry. 51: 53. DOI: 10.1016/0162-0134(93)85091-L  0.665
1993 Roberts L, Barondeau D, Lindahl P. Stability and redox potential of NiC from nickel—iron hydrogenase Journal of Inorganic Biochemistry. 51: 52. DOI: 10.1016/0162-0134(93)85090-U  0.666
1992 Shin W, Lindahl PA. Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from Clostridium thermoaceticum Biochemistry®. 31: 12870-12875. PMID 1334436 DOI: 10.1021/Bi00166A023  0.329
1992 Shin W, Stafford PR, Lindahl PA. Redox titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum Biochemistry. 31: 6003-6011. PMID 1320927 DOI: 10.1021/Bi00141A007  0.516
1990 Lindahl PA, Ragsdale SW, Münck E. Mössbauer study of CO dehydrogenase from Clostridium thermoaceticum. The Journal of Biological Chemistry. 265: 3880-8. PMID 2303484  0.676
1990 Lindahl PA, Münck E, Ragsdale SW. CO dehydrogenase from Clostridium thermoaceticum. EPR and electrochemical studies in CO2 and argon atmospheres. The Journal of Biological Chemistry. 265: 3873-9. PMID 2154491  0.525
1990 Lindahl PA, Kovacs JA. Reactivities and biological functions of iron-sulfur clusters Journal of Cluster Science. 1: 29-73. DOI: 10.1007/Bf00703585  0.462
1988 Lindahl PA, Papaefthymiou V, Orme-Johnson WH, Münck E. Mössbauer studies of solid thionin-oxidized MoFe protein of nitrogenase. The Journal of Biological Chemistry. 263: 19412-8. PMID 2848826  0.672
1987 Day EP, Kent TA, Lindahl PA, Münck E, Orme-Johnson WH, Roder H, Roy A. SQUID measurement of metalloprotein magnetization. New methods applied to the nitrogenase proteins. Biophysical Journal. 52: 837-53. PMID 3480761 DOI: 10.1016/S0006-3495(87)83277-0  0.642
1987 Lindahl PA, Gorelick NJ, Münck E, Orme-Johnson WH. EPR and Mössbauer studies of nucleotide-bound nitrogenase iron protein from Azotobacter vinelandii. The Journal of Biological Chemistry. 262: 14945-53. PMID 2822707  0.685
1987 Ragsdale SW, Lindahl PA, Münck E. Mössbauer, EPR, and optical studies of the corrinoid/iron-sulfur protein involved in the synthesis of acetyl coenzyme A by Clostridium thermoaceticum Journal of Biological Chemistry. 262: 14289-14297. PMID 2821001  0.479
1987 Lindahl PA, Teo BK, Orme-Johnson WH. EXAFS studies of the nitrogenase iron protein from Azotobacter vinelandii Inorganic Chemistry. 26: 3912-3916. DOI: 10.1021/Ic00270A018  0.645
1985 Lindahl PA, Day EP, Kent TA, Orme-Johnson WH, Münck E. Mössbauer, EPR, and magnetization studies of the Azotobacter vinelandii Fe protein. Evidence for a [4Fe-4S]1+ cluster with spin S = 3/2. The Journal of Biological Chemistry. 260: 11160-73. PMID 2993304  0.667
1984 Lindahl PA, Kojima N, Hausinger RP, Fox JA, Teo BK, Walsh CT, Orme-Johnson WH. Nickel and iron EXAFS of F420-reducing hydrogenase from Methanobacterium thermoautotrophicum Journal of the American Chemical Society. 106: 3062-3064. DOI: 10.1021/Ja00322A068  0.621
1983 Antonio M, Teo B, Orme-Johnson W, Lindahl P, Averill B. Iron EXAFS studies of the ironmolybdenum cofactor of nitrogenase and the 3Fe ferredoxin II of desulfovibrio gigas Inorganica Chimica Acta. 79: 88-89. DOI: 10.1016/S0020-1693(00)95121-1  0.8
1982 Antonio MR, Teo BK, Orme-Johnson WH, Nelson MJ, Groh SE, Lindahl PA, Kauzlarich SM, Averill BA. Iron EXAFS of the iron-molybdenum cofactor of nitrogenase Journal of the American Chemical Society. 104: 4703-4705. DOI: 10.1021/Ja00381A045  0.743
1982 Antonio MR, Teo BK, Orme-Johnson WH, Nelson MJ, Groh SE, Lindahl PA, Kauzlarich SM, Averill BA. Iron EXAFS of the iron-molybdenum cofactor of nitrogenase Journal of the American Chemical Society. 104: 4703-4705. DOI: 10.1021/ja00381a045  0.725
Show low-probability matches.