Morris D. Argyle, Ph.D. - Publications

Affiliations: 
2003 University of California, Berkeley, Berkeley, CA, United States 
Area:
heterogeneous catalysts

43 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Sheng Q, Ye RP, Gong W, Shi X, Xu B, Argyle M, Adidharma H, Fan M. Mechanism and catalytic performance for direct dimethyl ether synthesis by CO hydrogenation over CuZnZr/ferrierite hybrid catalyst. Journal of Environmental Sciences (China). 92: 106-117. PMID 32430113 DOI: 10.1016/J.Jes.2020.02.015  0.448
2020 Rahmati M, Safdari MS, Fletcher TH, Argyle MD, Bartholomew CH. Chemical and Thermal Sintering of Supported Metals with Emphasis on Cobalt Catalysts During Fischer-Tropsch Synthesis. Chemical Reviews. PMID 32363864 DOI: 10.1021/Acs.Chemrev.9B00417  0.371
2020 Park JL, Canizales KA, Argyle MD, Woodfield BF, Stowers KJ. The effects of doping alumina with silica in alumina-supported NiO catalysts for oxidative dehydrogenation of ethane Microporous and Mesoporous Materials. 293: 109799. DOI: 10.1016/J.Micromeso.2019.109799  0.481
2020 Chen M, Wu J, Lu C, Luo X, Huang Y, Jin B, Gao H, Zhang X, Argyle M, Liang Z. Photoreduction of CO2 in the presence of CH4 over g-C3N4 modified with TiO2 nanoparticles at room temperature Green Energy & Environment. DOI: 10.1016/J.Gee.2020.07.001  0.376
2019 Ye RP, Ding J, Gong W, Argyle MD, Zhong Q, Wang Y, Russell CK, Xu Z, Russell AG, Li Q, Fan M, Yao YG. CO hydrogenation to high-value products via heterogeneous catalysis. Nature Communications. 10: 5698. PMID 31836709 DOI: 10.1038/S41467-019-13638-9  0.386
2018 Hallac B, Brown J, Stavitski E, Harrison R, Argyle M. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study Catalysts. 8: 63. DOI: 10.3390/Catal8020063  0.46
2018 Park JL, Balijepalli SK, Argyle MD, Stowers KJ. Low Temperature Oxidative Dehydrogenation of Ethane by Ce-Modified NiNb Catalysts Industrial & Engineering Chemistry Research. 57: 5234-5240. DOI: 10.1021/Acs.Iecr.8B00531  0.462
2018 Rahmati M, Huang B, Schofield LM, Fletcher TH, Woodfield BF, Hecker WC, Bartholomew CH, Argyle MD. Effects of Ag promotion and preparation method on cobalt Fischer-Tropsch catalysts supported on silica-modified alumina Journal of Catalysis. 362: 118-128. DOI: 10.1016/J.Jcat.2018.03.027  0.415
2018 Rahmati M, Huang B, Mortensen MK, Keyvanloo K, Fletcher TH, Woodfield BF, Hecker WC, Argyle MD. Effect of different alumina supports on performance of cobalt Fischer-Tropsch catalysts Journal of Catalysis. 359: 92-100. DOI: 10.1016/J.Jcat.2017.12.022  0.435
2017 Albretsen MK, Huang B, Keyvanloo K, Woodfield BF, Bartholomew CH, Argyle MD, Hecker WC. Effect of Drying Temperature on Iron Fischer-Tropsch Catalysts Prepared by Solvent Deficient Precipitation Journal of Nanomaterials. 2017: 1-11. DOI: 10.1155/2017/7258650  0.377
2016 Okeson TJ, Keyvanloo K, Lawson JS, Argyle MD, Hecker WC. On the kinetics and mechanism of Fischer-Tropsch synthesis on a highly active iron catalyst supported on silica-stabilized alumina Catalysis Today. 261: 67-74. DOI: 10.1016/J.Cattod.2015.08.054  0.428
2015 Bartholomew CH, Argyle MD. Advances in catalyst deactivation and regeneration Catalysts. 5: 949-954. DOI: 10.3390/Catal5020949  0.408
2015 Argyle MD, Bartholomew CH. Heterogeneous catalyst deactivation and regeneration: A review Catalysts. 5: 145-269. DOI: 10.3390/Catal5010145  0.432
2015 Hallac BB, Keyvanloo K, Hedengren JD, Hecker WC, Argyle MD. An optimized simulation model for iron-based Fischer-Tropsch catalyst design: Transfer limitations as functions of operating and design conditions Chemical Engineering Journal. 263: 268-279. DOI: 10.1016/J.Cej.2014.10.108  0.388
2015 Zhang F, Xu D, Wang Y, Argyle MD, Fan M. CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst Applied Energy. 145: 295-305. DOI: 10.1016/J.Apenergy.2015.01.098  0.404
2014 Keyvanloo K, Horton JB, Hecker WC, Argyle MD. Effects of preparation variables on an alumina-supported FeCuK Fischer-Tropsch catalyst Catalysis Science and Technology. 4: 4289-4300. DOI: 10.1039/C4Cy00510D  0.444
2014 Xu L, Tang M, Duan L, Liu B, Ma X, Zhang Y, Argyle MD, Fan M. Pyrolysis characteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant Thermochimica Acta. 589: 1-10. DOI: 10.1016/J.Tca.2014.05.005  0.341
2014 Mei Z, Li Y, Fan M, Argyle MD, Tang J. The effects of bimetallic Co-Ru nanoparticles on Co/RuO2/Al 2O3 catalysts for the water gas shift and methanation International Journal of Hydrogen Energy. 39: 14808-14816. DOI: 10.1016/J.Ijhydene.2014.07.072  0.421
2014 Hallac BB, Brown JC, Baxter LL, Argyle MD. A kinetic study on the structural and functional roles of lanthana in iron-based high temperature water-gas shift catalysts International Journal of Hydrogen Energy. 39: 7306-7317. DOI: 10.1016/J.Ijhydene.2014.02.170  0.475
2014 Monterroso R, Fan M, Zhang F, Gao Y, Popa T, Argyle MD, Towler B, Sun Q. Effects of an environmentally-friendly, inexpensive composite iron-sodium catalyst on coal gasification Fuel. 116: 341-349. DOI: 10.1016/J.Fuel.2013.08.003  0.465
2014 Monterroso R, Fan M, Argyle MD, Varga K, Dyar D, Tang J, Sun Q, Towler B, Elliot KW, Kammen D. Characterization of the mechanism of gasification of a powder river basin coal with a composite catalyst for producing desired syngases and liquids Applied Catalysis a: General. 475: 116-126. DOI: 10.1016/J.Apcata.2014.01.007  0.441
2014 Xu L, Liu Y, Li Y, Lin Z, Ma X, Zhang Y, Argyle MD, Fan M. Catalytic CH4 reforming with CO2 over activated carbon based catalysts Applied Catalysis a: General. 469: 387-397. DOI: 10.1016/J.Apcata.2013.10.022  0.437
2014 Argyle MD, Frost TS, Bartholomew CH. Cobalt fischer-tropsch catalyst deactivation modeled using generalized power law expressions Topics in Catalysis. 57: 415-429. DOI: 10.1007/S11244-013-0197-9  0.42
2013 Bentley M, Fan M, Dutcher B, Tang M, Argyle MD, Russell AG, Zhang Y, Sharma MP, Swapp SM. Catalytic regeneration of mercury sorbents. Journal of Hazardous Materials. 262: 642-8. PMID 24121636 DOI: 10.1016/J.Jhazmat.2013.09.021  0.342
2013 Popa T, Fan M, Argyle MD, Slimane RB, Bell DA, Towler BF. Catalytic gasification of a Powder River Basin coal Fuel. 103: 161-170. DOI: 10.1016/J.Fuel.2012.08.049  0.453
2013 Popa T, Fan M, Argyle MD, Dyar MD, Gao Y, Tang J, Speicher EA, Kammen DM. H2 and COx generation from coal gasification catalyzed by a cost-effective iron catalyst Applied Catalysis a: General. 464: 207-217. DOI: 10.1016/J.Apcata.2013.05.038  0.491
2010 Popa T, Xu G, Barton TF, Argyle MD. High temperature water gas shift catalysts with alumina Applied Catalysis a: General. 379: 15-23. DOI: 10.1016/J.Apcata.2010.02.021  0.5
2009 John S, Hamann JC, Muknahallipatna SS, Legowski S, Ackerman JF, Argyle MD. Energy efficiency of hydrogen sulfide decomposition in a pulsed corona discharge reactor Chemical Engineering Science. 64: 4826-4834. DOI: 10.1016/J.Ces.2009.07.034  0.313
2007 Zhao GB, John S, Zhang JJ, Hamann JC, Muknahallipatna SS, Legowski S, Ackerman JF, Argyle MD. Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor Chemical Engineering Science. 62: 2216-2227. DOI: 10.1016/J.Ces.2006.12.052  0.307
2006 Zhao GB, Argyle MD, Radosz M. Effect of CO on NO and N 2O conversions in nonthermal argon plasma Journal of Applied Physics. 99. DOI: 10.1063/1.2197067  0.372
2006 Zhao GB, John S, Zhang JJ, Wang L, Muknahallipatna S, Hamann JC, Ackerman JF, Argyle MD, Plumb OA. Methane conversion in pulsed corona discharge reactors Chemical Engineering Journal. 125: 67-79. DOI: 10.1016/J.Cej.2006.08.008  0.331
2005 Argyle MD, Chen K, Iglesia E, Bell AT. In situ UV-visible spectroscopic measurements of kinetic parameters and active sites for catalytic oxidation of alkanes on vanadium oxides. The Journal of Physical Chemistry. B. 109: 2414-20. PMID 16851236 DOI: 10.1021/Jp040166C  0.563
2005 Zhao GB, Hu X, Argyle MD, Radosz M. Effect of CO 2 on nonthermal-plasma reactions of nitrogen oxides in N 2. 2. Percent-level concentrations Industrial and Engineering Chemistry Research. 44: 3935-3946. DOI: 10.1021/Ie048905Z  0.357
2005 Zhao GB, Garikipati SVBJ, Hu X, Argyle MD, Radosz M. The effect of gas pressure on NO conversion energy efficiency in nonthermal nitrogen plasma Chemical Engineering Science. 60: 1927-1937. DOI: 10.1016/J.Ces.2004.11.032  0.31
2005 Zhao GB, Garikipati SVBJ, Hu X, Argyle MD, Radosz M. Effect of oxygen on nonthermal plasma reactions of nitrogen oxides in nitrogen Aiche Journal. 51: 1800-1812. DOI: 10.1002/Aic.10452  0.381
2005 Zhao GB, Garikipati SVBJ, Hu X, Argyle MD, Radosz M. Effect of reactor configuration on nitric oxide conversion in nitrogen plasma Aiche Journal. 51: 1813-1821. DOI: 10.1002/Aic.10451  0.398
2005 Argyle MD, Chen K, Iglesia E, Bell AT. In situ UV-visible spectroscopic studies of supported metal oxides during catalytic oxidation of alkanes and NO x decomposition Acs National Meeting Book of Abstracts. 229: PETR-96.  0.473
2004 Argyle MD, Chen K, Resini C, Krebs C, Bell AT, Iglesia E. Extent of reduction of vanadium oxides during catalytic oxidation of alkanes measured by in-situ UV-visible spectroscopy Journal of Physical Chemistry B. 108: 2345-2353. DOI: 10.1021/Jp030989M  0.576
2004 Zhao GB, Hu X, Argyle MD, Radosz M. N atom radicals and N2(A3Σu +) found to be responsible for nitrogen oxides conversion in non-thermal nitrogen plasma Industrial and Engineering Chemistry Research. 43: 5077-5088. DOI: 10.1021/Ie049795Z  0.307
2003 Argyle MD, Chen K, Resini C, Krebs C, Bell AT, Iglesia E. In situ UV-visible assessment of extent of reduction during oxidation reactions on oxide catalysts. Chemical Communications (Cambridge, England). 2082-3. PMID 12934922 DOI: 10.1039/B305264H  0.586
2003 Waku T, Argyle MD, Bell AT, Iglesia E. Effects of O2 Concentration on the Rate and Selectivity in Oxidative Dehydrogenation of Ethane Catalyzed by Vanadium Oxide: Implications for O2 Staging and Membrane Reactors Industrial and Engineering Chemistry Research. 42: 5462-5466. DOI: 10.1021/Ie0304661  0.529
2002 Argyle MD, Chen K, Bell AT, Iglesia E. Ethane oxidative dehydrogenation pathways on vanadium oxide catalysts Journal of Physical Chemistry B. 106: 5421-5427. DOI: 10.1021/Jp0144552  0.571
2002 Argyle MD, Chen K, Bell AT, Iglesia E. Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia Journal of Catalysis. 208: 139-149. DOI: 10.1006/Jcat.2002.3570  0.524
Show low-probability matches.