Diana Farkas - Publications

Affiliations: 
Materials Science & Engineering Virginia Polytechnic Institute and State University, Blacksburg, VA, United States 
Area:
Materials Science Engineering

172 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Pasianot R, Farkas D. Atomistic modeling of dislocations in a random quinary high-entropy alloy Computational Materials Science. 173: 109366. DOI: 10.1016/J.Commatsci.2019.109366  0.428
2020 Beets N, Stuckner J, Murayama M, Farkas D. Fracture in nanoporous gold: An integrated computational and experimental study Acta Materialia. 185: 257-270. DOI: 10.1016/J.Actamat.2019.12.008  0.336
2020 Farkas D. Grain boundary structure in high-entropy alloys Journal of Materials Science. 55: 9173-9183. DOI: 10.1007/S10853-020-04387-Y  0.499
2019 Kuhr B, Farkas D. Dislocation content in random high angle grain boundaries Modelling and Simulation in Materials Science and Engineering. 27: 045005. DOI: 10.1088/1361-651X/Ab122E  0.475
2019 Bertolino G, Ruda M, Farkas D. Fracture resistance of textured polycrystalline Zr: A simulation study Computational Materials Science. 162: 304-313. DOI: 10.1016/J.Commatsci.2019.02.033  0.427
2019 Beets N, Cui Y, Farkas D, Misra A. Mechanical response of a bicontinuous copper–molybdenum nano-composite: Experiments and simulations Acta Materialia. 178: 79-89. DOI: 10.1016/J.Actamat.2019.07.045  0.396
2019 Johnson D, Kuhr B, Farkas D, Was G. Quantitative linkage between the stress at dislocation channel – Grain boundary interaction sites and irradiation assisted stress corrosion crack initiation Acta Materialia. 170: 166-175. DOI: 10.1016/J.Actamat.2019.02.032  0.478
2019 Beets N, Farkas D, Corcoran S. Deformation mechanisms and scaling relations in the mechanical response of nano-porous Au Acta Materialia. 165: 626-637. DOI: 10.1016/J.Actamat.2018.12.006  0.379
2019 Kuhr B, Farkas D, Robertson IM, Johnson D, Was G. Stress Localization Resulting from Grain Boundary Dislocation Interactions in Relaxed and Defective Grain Boundaries Metallurgical and Materials Transactions A. 51: 667-683. DOI: 10.1007/S11661-019-05534-0  0.507
2019 Zhang Z, Ódor É, Farkas D, Jóni B, Ribárik G, Tichy G, Nandam S, Ivanisenko J, Preuss M, Ungár T. Dislocations in Grain Boundary Regions: The Origin of Heterogeneous Microstrains in Nanocrystalline Materials Metallurgical and Materials Transactions A. 51: 513-530. DOI: 10.1007/S11661-019-05492-7  0.461
2018 Farkas D, Caro A. Model interatomic potentials and lattice strain in a high-entropy alloy Journal of Materials Research. 33: 3218-3225. DOI: 10.1557/Jmr.2018.245  0.327
2018 Smith L, Farkas D. Connecting interatomic potential characteristics with deformation response in FCC materials Computational Materials Science. 147: 18-27. DOI: 10.1016/J.Commatsci.2018.01.055  0.5
2018 Beets N, Farkas D. Mechanical Response of Au Foams of Varying Porosity from Atomistic Simulations Jom. 70: 2185-2191. DOI: 10.1007/S11837-018-3050-6  0.386
2017 Bertolino G, Ruda M, Pasianot R, Farkas D. Atomistic simulation of the tension/compression response of textured nanocrystalline HCP Zr Computational Materials Science. 130: 172-182. DOI: 10.1016/J.Commatsci.2016.12.038  0.494
2017 Smith L, Farkas D. Deformation response of grain boundary networks at high temperature Journal of Materials Science. 53: 5696-5705. DOI: 10.1007/S10853-017-1760-8  0.482
2016 Johnson DC, Kuhr B, Farkas D, Was GS. Quantitative analysis of localized stresses in irradiated stainless steels using high resolution electron backscatter diffraction and molecular dynamics modeling Scripta Materialia. 116: 87-90. DOI: 10.1016/J.Scriptamat.2016.01.017  0.426
2016 Kuhr B, Farkas D, Robertson IM. Atomistic studies of hydrogen effects on grain boundary structure and deformation response in FCC Ni Computational Materials Science. 122: 92-101. DOI: 10.1016/J.Commatsci.2016.05.014  0.516
2016 Ruestes CJ, Farkas D, Caro A, Bringa EM. Hardening under compression in Au foams Acta Materialia. 108: 1-7. DOI: 10.1016/J.Actamat.2016.02.030  0.379
2015 McMurtrey MD, Cui B, Robertson I, Farkas D, Was GS. Mechanism of dislocation channel-induced irradiation assisted stress corrosion crack initiation in austenitic stainless steel Current Opinion in Solid State and Materials Science. 19: 305-314. DOI: 10.1016/J.Cossms.2015.04.001  0.409
2014 Smith L, Zimmerman JA, Hale LM, Farkas D. Molecular dynamics study of deformation and fracture in a tantalum nano-crystalline thin film Modelling and Simulation in Materials Science and Engineering. 22. DOI: 10.1088/0965-0393/22/4/045010  0.46
2014 Smith L, Farkas D. Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms Philosophical Magazine. 94: 152-173. DOI: 10.1080/14786435.2013.850548  0.508
2014 Ruestes CJ, Bertolino G, Ruda M, Farkas D, Bringa EM. Grain size effects in the deformation of [0 0 0 1] textured nanocrystalline Zr Scripta Materialia. 71: 9-12. DOI: 10.1016/J.Scriptamat.2013.09.010  0.502
2014 McMurtrey MD, Was GS, Cui B, Robertson I, Smith L, Farkas D. Strain localization at dislocation channel-grain boundary intersections in irradiated stainless steel International Journal of Plasticity. 56: 219-231. DOI: 10.1016/J.Ijplas.2014.01.001  0.479
2013 Farkas D. Atomistic simulations of metallic microstructures Current Opinion in Solid State and Materials Science. 17: 284-297. DOI: 10.1016/J.Cossms.2013.11.002  0.512
2013 Ruda M, Bertolino G, Farkas D, Baruj A. Effect of dilute H on crack tip plasticity in Zr Computational Materials Science. 69: 327-334. DOI: 10.1016/J.Commatsci.2012.11.055  0.341
2013 Farkas D, Caro A, Bringa E, Crowson D. Mechanical response of nanoporous gold Acta Materialia. 61: 3249-3256. DOI: 10.1016/J.Actamat.2013.02.013  0.378
2012 Bringa EM, Monk JD, Caro A, Misra A, Zepeda-Ruiz L, Duchaineau M, Abraham F, Nastasi M, Picraux ST, Wang YQ, Farkas D. Are nanoporous materials radiation resistant? Nano Letters. 12: 3351-5. PMID 21651306 DOI: 10.1021/Nl201383U  0.629
2012 Was GS, Farkas D, Robertson IM. Micromechanics of dislocation channeling in intergranular stress corrosion crack nucleation Current Opinion in Solid State and Materials Science. 16: 134-142. DOI: 10.1016/J.Cossms.2012.03.003  0.413
2011 Vatne IR, Østby E, Thaulow C, Farkas D. Quasicontinuum simulation of crack propagation in bcc-Fe Materials Science and Engineering A. 528: 5122-5134. DOI: 10.1016/J.Msea.2011.03.006  0.414
2011 McMurtrey MD, Was GS, Patrick L, Farkas D. Relationship between localized strain and irradiation assisted stress corrosion cracking in an Austenitic alloy Transactions of the American Nuclear Society. 105: 87. DOI: 10.1016/J.Msea.2011.01.073  0.463
2010 Stukowski A, Albe K, Farkas D. Nanotwinned fcc metals: Strengthening versus softening mechanisms Physical Review B - Condensed Matter and Materials Physics. 82. DOI: 10.1103/Physrevb.82.224103  0.446
2010 Ruda M, Farkas D, Bertolino G. Twinning and phase transformations in Zr crack tips Computational Materials Science. 49: 743-750. DOI: 10.1016/J.Commatsci.2010.06.017  0.349
2010 Weissmüller J, Duan H, Farkas D. Deformation of solids with nanoscale pores by the action of capillary forces Acta Materialia. 58: 1-13. DOI: 10.1016/J.Actamat.2009.08.008  0.344
2009 Ward DK, Farkas D, Lian J, Curtin WA, Wang J, Kim KS, Qi Y. Engineering size-scaling of plastic deformation in nanoscale asperities. Proceedings of the National Academy of Sciences of the United States of America. 106: 9580-5. PMID 19497857 DOI: 10.1073/Pnas.0900804106  0.358
2009 Caro A, Farkas D, Bringa EM, Gilmer GH, Zepeda-Ruiz LA. Effects of Microalloying on the Mobility and Mechanical Response of Interfaces in Nanocrystalline Cu Materials Science Forum. 21-30. DOI: 10.4028/Www.Scientific.Net/Msf.633-634.21  0.495
2009 Nair AK, Cordill MJ, Farkas D, Gerberich WW. Nanoindentation of thin films: Simulations and experiments Journal of Materials Research. 24: 1135-1141. DOI: 10.1557/Jmr.2009.0136  0.606
2009 Farkas D, Patrick L. Tensile deformation of fcc Ni as described by an EAM potential Philosophical Magazine. 89: 3435-3450. DOI: 10.1080/14786430903299329  0.518
2009 Crowson DA, Farkas D, Corcoran SG. Mechanical stability of nanoporous metals with small ligament sizes Scripta Materialia. 61: 497-499. DOI: 10.1016/J.Scriptamat.2009.05.005  0.344
2009 Kulkarni Y, Asaro RJ, Farkas D. Are nanotwinned structures in fcc metals optimal for strength, ductility and grain stability? Scripta Materialia. 60: 532-535. DOI: 10.1016/J.Scriptamat.2008.12.007  0.405
2009 Cordill MJ, Lund MS, Parker J, Leighton C, Nair AK, Farkas D, Moody NR, Gerberich WW. The Nano-Jackhammer effect in probing near-surface mechanical properties International Journal of Plasticity. 25: 2045-2058. DOI: 10.1016/J.Ijplas.2008.12.015  0.585
2009 Ruda M, Farkas D, Garcia G. Atomistic simulations in the Fe-C system Computational Materials Science. 45: 550-560. DOI: 10.1016/J.Commatsci.2008.11.020  0.343
2008 Nair AK, Farkas D, Kriz RD. Molecular dynamics study of size effects and deformation of thin films due to nanoindentation Cmes - Computer Modeling in Engineering and Sciences. 24: 239-248. DOI: 10.3970/Cmes.2008.024.239  0.572
2008 Monk J, Hoyt JJ, Farkas D. Metastability of multitwinned Ag nanorods: Molecular dynamics study Physical Review B - Condensed Matter and Materials Physics. 78. DOI: 10.1103/Physrevb.78.024112  0.671
2008 BRINGA E, FARKAS D, CARO A, WANG Y, MCNANEY J, SMITH R. Fivefold twin formation during annealing of nanocrystalline Cu Scripta Materialia. 59: 1267-1270. DOI: 10.1016/J.Scriptamat.2008.08.041  0.394
2008 Farkas D, Mohanty S, Monk J. Strain-driven grain boundary motion in nanocrystalline materials Materials Science and Engineering: A. 493: 33-40. DOI: 10.1016/J.Msea.2007.06.095  0.736
2008 Nair AK, Parker E, Gaudreau P, Farkas D, Kriz RD. Size effects in indentation response of thin films at the nanoscale: A molecular dynamics study International Journal of Plasticity. 24: 2016-2031. DOI: 10.1016/J.Ijplas.2008.01.007  0.583
2007 Farkas D, Mohanty S, Monk J. Linear grain growth kinetics and rotation in nanocrystalline Ni. Physical Review Letters. 98: 165502. PMID 17501428 DOI: 10.1103/Physrevlett.98.165502  0.723
2007 Farkas D, Bringa E, Caro A. Annealing twins in nanocrystalline fcc metals: A molecular dynamics simulation Physical Review B - Condensed Matter and Materials Physics. 75. DOI: 10.1103/Physrevb.75.184111  0.479
2007 Monk J, Farkas D. Strain-induced grain growth and rotation in nickel nanowires Physical Review B - Condensed Matter and Materials Physics. 75. DOI: 10.1103/Physrevb.75.045414  0.735
2007 Monk J, Farkas D. Tension-compression asymmetry and size effects in nanocrystalline Ni nanowires Philosophical Magazine. 87: 2233-2244. DOI: 10.1080/14786430701361404  0.69
2007 Demkowicz MJ, Argon AS, Farkas D, Frary M. Simulation of plasticity in nanocrystalline silicon Philosophical Magazine. 87: 4253-4271. DOI: 10.1080/14786430701358715  0.422
2007 Crowson DA, Farkas D, Corcoran SG. Geometric relaxation of nanoporous metals: The role of surface relaxation Scripta Materialia. 56: 919-922. DOI: 10.1016/J.Scriptamat.2007.02.017  0.329
2007 Jang H, Farkas D. Interaction of lattice dislocations with a grain boundary during nanoindentation simulation Materials Letters. 61: 868-871. DOI: 10.1016/J.Matlet.2006.06.004  0.515
2007 Cordill MJ, Mook WM, Nair AK, Farkas D, Gerberich WW. Novel routes to nanocrystalline mechanical characterization Jom. 59: 59-61. DOI: 10.1007/S11837-007-0119-Z  0.569
2007 Farkas D. Fracture resistance of nanocrystalline Ni Metallurgical and Materials Transactions a: Physical Metallurgy and Materials Science. 38: 2168-2173. DOI: 10.1007/S11661-007-9180-Z  0.494
2007 Gordon PA, Neeraj T, Luton MJ, Farkas D. Crack-Tip Deformation Mechanisms in α-Fe and Binary Fe Alloys: An Atomistic Study on Single Crystals Metallurgical and Materials Transactions A. 38: 2191-2202. DOI: 10.1007/S11661-007-9176-8  0.373
2006 Farkas D, Frøseth A, Van Swygenhoven H. Grain boundary migration during room temperature deformation of nanocrystalline Ni Scripta Materialia. 55: 695-698. DOI: 10.1016/J.Scriptamat.2006.06.032  0.518
2006 Reynolds WT, Farkas D. Edge-to-edge interfaces in Ti-Al modeled with the embedded atom method Metallurgical and Materials Transactions A. 37: 865-871. DOI: 10.1007/S11661-006-0060-8  0.461
2006 Monk J, Hyde B, Farkas D. The role of partial grain boundary dislocations in grain boundary sliding and coupled grain boundary motion Journal of Materials Science. 41: 7741-7746. DOI: 10.1007/S10853-006-0552-3  0.781
2005 Farkas D, Hyde B. Improving the ductility of nanocrystalline bcc metals. Nano Letters. 5: 2403-7. PMID 16351186 DOI: 10.1021/Nl0515807  0.655
2005 Farkas D, Willemann M, Hyde B. Atomistic mechanisms of fatigue in nanocrystalline metals. Physical Review Letters. 94: 165502. PMID 15904240 DOI: 10.1103/Physrevlett.94.165502  0.594
2005 Crowson DA, Farkas D, Corcoran SG. Surface stress effects on the elastic behavior of nanoporous metals Materials Research Society Symposium Proceedings. 900: 464-469. DOI: 10.1557/Proc-0900-O12-33  0.351
2005 Hyde B, Farkas D, Caturla MJ. Atomistic sliding mechanisms of the ∑=5 symmetric tilt grain boundary in bcc iron Philosophical Magazine. 85: 3795-3807. DOI: 10.1080/14786430500256342  0.693
2005 Farkas D. Twinning and recrystallisation as crack tip deformation mechanisms during fracture Philosophical Magazine. 85: 387-397. DOI: 10.1080/147864304123313157070  0.405
2005 Farkas D, Curtin WA. Plastic deformation mechanisms in nanocrystalline columnar grain structures Materials Science and Engineering A. 412: 316-322. DOI: 10.1016/J.Msea.2005.09.043  0.521
2005 Farkas D, Van Petegem S, Derlet P, Van Swygenhoven H. Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni Acta Materialia. 53: 3115-3123. DOI: 10.1016/J.Actamat.2005.02.012  0.363
2005 Hyde B, Espinosa HD, Farkas D. An atomistic investigation of elastic and plastic properties of Au nanowires Jom. 57: 62-66. DOI: 10.1007/S11837-005-0118-X  0.655
2005 Farkas D, Hyde B, Nogueira R, Ruda M. Atomistic simulations of the effects of segregated elements on grain-boundary fracture in body-centered-cubic Fe Metallurgical and Materials Transactions A. 36: 2067-2072. DOI: 10.1007/S11661-005-0327-5  0.684
2004 Jang H, Farkas D. Atomistic simulation of dislocation interactions with a Σ = 5 (210) grain boundary during nanoindentation of Ni Materials Research Society Symposium Proceedings. 821: 203-208. DOI: 10.1557/Proc-821-P8.17  0.537
2004 Jang H, Farkas D. Atomistic Simulation of Dislocation Interactions with a σ = 5 (210) Grain Boundary during Nanoindentation of Ni Mrs Proceedings. 821. DOI: 10.1557/PROC-821-P8.17  0.449
2004 Latapie A, Farkas D. Molecular dynamics investigation of the fracture behavior of nanocrystalline α-Fe Physical Review B - Condensed Matter and Materials Physics. 69. DOI: 10.1103/Physrevb.69.134110  0.48
2004 Noronha SJ, Farkas D. Effect of dislocation blocking on fracture behavior of Al and α-Fe: A multiscale study Materials Science and Engineering A. 365: 156-165. DOI: 10.1016/J.Msea.2003.09.022  0.394
2004 De Bas BJS, Farkas D. Atomistic simulation of grain boundary diffusion mechanisms in B2 NiAl Intermetallics. 12: 937-943. DOI: 10.1016/J.Intermet.2004.02.023  0.479
2003 Farkas D, Soulé De Bas B. Direct molecular dynamics observations of bulk and grain boundary diffusion in NiAl Defect and Diffusion Forum. 213: 83-94. DOI: 10.4028/Www.Scientific.Net/Ddf.213-215.83  0.478
2003 Latapie A, Farkas D. Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in Fe Modelling and Simulation in Materials Science and Engineering. 11: 745-753. DOI: 10.1088/0965-0393/11/5/303  0.339
2003 Latapie A, Farkas D. Effect of grain size on the elastic properties of nanocrystalline α-iron Scripta Materialia. 48: 611-615. DOI: 10.1016/S1359-6462(02)00467-0  0.406
2003 De BS, Farkas D. Molecular dynamics simulations of diffusion mechanisms in NiAl Acta Materialia. 51: 1437-1446. DOI: 10.1016/S1359-6454(02)00537-2  0.359
2002 Noronha SJ, Farkas D. Dislocation pinning effects on fracture behavior: Atomistic and dislocation dynamics simulations Physical Review B - Condensed Matter and Materials Physics. 66: 1321031-1321034. DOI: 10.1103/Physrevb.66.132103  0.436
2002 Farkas D, Van Swygenhoven H, Derlet PM. Intergranular fracture in nanocrystalline metals Physical Review B - Condensed Matter and Materials Physics. 66: 601011-601014. DOI: 10.1103/Physrevb.66.060101  0.47
2002 Ramasubramaniam A, Curtin WA, Farkas D. Fracture in nanolamellar materials: Continuum and atomistic models with application to titanium aluminides Philosophical Magazine a: Physics of Condensed Matter, Structure, Defects and Mechanical Properties. 82: 2397-2417. DOI: 10.1080/01418610210144412  0.421
2001 Farkas D, Soulé de Bas B. Direct molecular dynamics simulations of diffusion mechanisms in NiAl Materials Research Society Symposium - Proceedings. 646. DOI: 10.1557/Proc-646-N6.7.1  0.362
2001 Farkas D, Duranduru M, Curtin WA, Ribbens C. Multiple-dislocation emission from the crack tip in the ductile fracture of Al Philosophical Magazine A. 81: 1241-1255. DOI: 10.1080/01418610108214439  0.385
2001 Van Swygenhoven H, Caro A, Farkas D. Grain boundary structure and its influence on plastic deformation of polycrystalline FCC metals at the nanoscale: A molecular dynamics study Scripta Materialia. 44: 1513-1516. DOI: 10.1016/S1359-6462(01)00717-5  0.484
2001 Van Swygenhoven H, Caro A, Farkas D. A molecular dynamics study of polycrystalline fcc metals at the nanoscale: Grain boundary structure and its influence on plastic deformation Materials Science and Engineering A. 309: 440-444. DOI: 10.1016/S0921-5093(00)01794-9  0.52
2000 Swygenhoven HV, Derlet P, Caro A, Farkas D, Caturla M, Rubia TDdl. Atomistic Studies of Plasticity in Nanophase Metals Mrs Proceedings. 634. DOI: 10.1557/Proc-634-B5.5.1  0.526
2000 Farkas D. Atomistic studies of intrinsic crack-tip plasticity Mrs Bulletin. 25: 35-38. DOI: 10.1557/Mrs2000.71  0.358
2000 Ye F, Mercer C, Farkas D, Soboyejo WO. The Fracture and Fatigue Crack Growth Behavior of Forged Damage-Tolerant Niobium Aluminide Intermetallics Astm Special Technical Publications. 278-298. DOI: 10.1520/Stp13409S  0.343
2000 Van Swygenhoven H, Farkas D, Caro A. Grain-boundary structures in polycrystalline metals at the nanoscale Physical Review B - Condensed Matter and Materials Physics. 62: 831-838. DOI: 10.1103/Physrevb.62.831  0.503
2000 Van Swygenhoven H, Farkas D, Caro A. Grain-boundary structures in polycrystalline metals at the nanoscale Physical Review B. 62: 831-838. DOI: 10.1103/PhysRevB.62.831  0.332
2000 Farkas D. Atomistic theory and computer simulation of grain boundary structure and diffusion Journal of Physics Condensed Matter. 12. DOI: 10.1088/0953-8984/12/42/201  0.409
2000 Farkas D. Fracture mechanisms of symmetrical tilt grain boundaries Philosophical Magazine Letters. 80: 229-237. DOI: 10.1080/095008300176209  0.344
2000 Farkas D. Bulk and intergranular fracture behaviour of NiAl Philosophical Magazine a: Physics of Condensed Matter, Structure, Defects and Mechanical Properties. 80: 1425-1444. DOI: 10.1080/01418610008212128  0.415
1999 Weertman J, Farkas D, Hemker K, Kung H, Mayo M, Mitra R, Swygenhoven HV. Structure and Mechanical Behavior of Bulk Nanocrystalline Materials Mrs Bulletin. 24: 44-53. DOI: 10.1557/S088376940005154X  0.507
1999 Farkas D. Mechanisms of intergranular fracture Materials Research Society Symposium - Proceedings. 539: 291-298. DOI: 10.1557/Proc-539-291  0.43
1999 Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA. Interatomic potentials for monoatomic metals from experimental data andab initiocalculations Physical Review B. 59: 3393-3407. DOI: 10.1103/Physrevb.59.3393  0.331
1999 Caillard D, Vailhé C, Farkas D. In-situ straining experiments in NiAl along soft orientations, and comparison with atomistic simulations Philosophical Magazine a: Physics of Condensed Matter, Structure, Defects and Mechanical Properties. 79: 723-739. DOI: 10.1080/01418619908210327  0.406
1999 Van Swygenhoven H, Spaczér M, Farkas D, Caro A. The role of grain size and the presence of low and high angle grain boundaries in the deformation mechanism of nanophase Ni: A molecular dynamics computer simulation Nanostructured Materials. 12: 323-326. DOI: 10.1016/S0965-9773(99)00127-0  0.518
1999 Ye F, Farkas D, Soboyejo W. An investigation of fracture and fatigue crack growth behavior of cast niobium aluminide intermetallics Materials Science and Engineering: A. 264: 81-93. DOI: 10.1016/S0921-5093(98)01112-5  0.342
1998 Farkas D. Mechanisms of Intergranular Fracture Mrs Proceedings. 539. DOI: 10.1557/PROC-539-291  0.321
1998 Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA. Interatomic Potentials for Al and Ni From Experimental Data and AB Initio Calculations Mrs Proceedings. 538. DOI: 10.1557/Proc-538-535  0.337
1998 Ludwig M, Farkas D, Pedraza D, Schmauder S. Embedded atom potential for Fe-Cu interactions and simulations of precipitate-matrix interfaces Modelling and Simulation in Materials Science and Engineering. 6: 19-28. DOI: 10.1088/0965-0393/6/1/003  0.323
1998 Mishin Y, Farkas D. Atomistic simulation of [001] symmetrical tilt grain boundaries in NiAl Philosophical Magazine a: Physics of Condensed Matter, Structure, Defects and Mechanical Properties. 78: 29-56. DOI: 10.1080/014186198253679  0.439
1998 Mishin Y, Farkas D. Atomistic simulation of [001] symmetrical tilt grain boundaries in NiAl Philosophical Magazine A. 78: 29-56. DOI: 10.1080/014186198253679  0.391
1998 Panova J, Farkas D. Atomistic simulation of dislocation core configurations in TiAl Philosophical Magazine a: Physics of Condensed Matter, Structure, Defects and Mechanical Properties. 78: 389-404. DOI: 10.1080/01418619808241910  0.362
1998 Mishin Y, Farkas D. Atomistic simulation of point defects and diffusion in B2 NiAl Scripta Materialia. 39: 625-630. DOI: 10.1080/01418619708210289  0.341
1998 Farkas D. Fracture toughness from atomistic simulations: Brittleness induced by emission of sessile dislocations Scripta Materialia. 39: 533-536. DOI: 10.1016/S1359-6462(98)00193-6  0.431
1998 Farkas D, Cardozo F. The multiplicity of possible grain boundary structures in Ni3Al Intermetallics. 6: 257-268. DOI: 10.1016/S0966-9795(98)80020-4  0.5
1998 Shastry V, Farkas D. Atomistic simulation of fracture in CoAl and FeAl Intermetallics. 6: 95-104. DOI: 10.1016/S0966-9795(97)00048-4  0.364
1998 Vailhe C, Farkas D. Interatomic potentials and dislocation simulation for the ternary B2 Ni-35Al-12Fe alloy Materials Science and Engineering A. 258: 26-31. DOI: 10.1016/S0921-5093(98)00912-5  0.375
1998 Farkas D. Atomistic simulations of fracture in the B2 phase of the Nb–Ti–Al system Materials Science and Engineering: A. 249: 249-258. DOI: 10.1016/S0921-5093(98)00513-9  0.421
1998 Mutasa B, Farkas D. Atomistic structure of high-index surfaces in metals and alloys Surface Science. 415: 312-319. DOI: 10.1016/S0039-6028(98)00552-4  0.332
1998 Panova J, Farkas D. Atomistic simulation of fracture in TiAl Metallurgical and Materials Transactions A. 29: 951-955. DOI: 10.1007/S11661-998-1004-2  0.359
1998 Mutasa B, Farkas D. Effect of ordering energy and stoichiometry in ∑ = 5 boundaries in B2 compounds Metallurgical and Materials Transactions a: Physical Metallurgy and Materials Science. 29: 2655-2668. DOI: 10.1007/S11661-998-0306-8  0.489
1998 Farkas D. Atomistic simulations of fracture in the B2 phase of the Nb-Ti-Al system Materials Science and Engineering A. 249: 249-258.  0.313
1998 Farkas D, Cardozo FA. The multiplicity of possible grain boundary structures in Ni3Al Intermetallics. 6: 257-268.  0.397
1997 Vailhé C, Farkas D. Shear faults and dislocation core structures in B2 CoAl Journal of Materials Research. 12: 2559-2570. DOI: 10.1557/Jmr.1997.0340  0.379
1997 Farkas D, Zhou SJ, Vailhé C, Mutasa B, Panova J. Embedded atom calculations of unstable stacking fault energies and surface energies in intermetallics Journal of Materials Research. 12: 93-99. DOI: 10.1557/Jmr.1997.0015  0.339
1997 Mishin Y, Farkas D. Monte Carlo simulation of correlation effects in a random bcc alloy Philosophical Magazine a: Physics of Condensed Matter, Structure, Defects and Mechanical Properties. 75: 201-219. DOI: 10.1080/01418619708210291  0.36
1997 Mishin Y, Farkas D. Atomistic simulation of point defects and diffusion in B2 NiAl Part II. Diffusion mechanisms Philosophical Magazine a: Physics of Condensed Matter, Structure, Defects and Mechanical Properties. 75: 187-199. DOI: 10.1080/01418619708210290  0.331
1997 Chen J, Farkas D, Reynolds W. Atomistic simulation of an f.c.c./b.c.c. interface in NiCr alloys Acta Materialia. 45: 4415-4421. DOI: 10.1016/S1359-6454(97)00159-6  0.303
1997 Vailhé C, Farkas D. Shear faults and dislocation core structure simulations in B2 FeAl Acta Materialia. 45: 4463-4473. DOI: 10.1016/S1359-6454(97)00138-9  0.363
1997 Farkas D, Vailhe C, Panova J. Empirical angular-dependent potentials for intermetallics Journal of Phase Equilibria. 18: 530-535. DOI: 10.1007/Bf02665806  0.305
1996 Ruda M, Farkas D, Abriata J. Embedded-atom interatomic potentials for hydrogen in metals and intermetallic alloys. Physical Review. B, Condensed Matter. 54: 9765-9774. PMID 9984710 DOI: 10.1103/Physrevb.54.9765  0.31
1996 Mutasa B, Farkas D. Atomistic simulation of grain boundary structure in a series of B2 intermetallics Materials Science Forum. 207: 305-308. DOI: 10.4028/Www.Scientific.Net/Msf.207-209.305  0.47
1996 Farkas D. Grain boundary structure in Ni3Al Materials Science Forum. 207: 229-232. DOI: 10.4028/Www.Scientific.Net/Msf.207-209.229  0.497
1996 Farkas D. Atomistic Aspects of Crack Propagation Along High Angle Grain Boundaries Mrs Proceedings. 460. DOI: 10.1557/Proc-460-399  0.515
1996 Mishin Y, Farkas D. Atomistic Simulation of Grain Boundary Structure and Diffusion in B2 NiAl Mrs Proceedings. 458. DOI: 10.1557/Proc-458-21  0.494
1996 Clinedinst J, Farkas D. Atomistic Study of Crack Propagation and Dislocation Emission in Cu-Ni Multilayers Mrs Proceedings. 457. DOI: 10.1557/Proc-457-315  0.371
1996 Mutasa B, Farkas D. Atomistic Structure of High Index Surfaces Mrs Proceedings. 440. DOI: 10.1557/Proc-440-39  0.303
1996 Shastry V, Farkas D. Molecular statics simulation of fracture in α-iron Modelling and Simulation in Materials Science and Engineering. 4: 473-492. DOI: 10.1088/0965-0393/4/5/004  0.358
1996 Farkas D, Roqueta D, Vilette A, Ternes K. Atomistic simulations in ternary Ni - Ti - Al alloys Modelling and Simulation in Materials Science and Engineering. 4: 359-369. DOI: 10.1088/0965-0393/4/4/003  0.348
1996 Farkas D, Jones C. Interatomic potentials for ternary Nb-Ti-Al alloys Modelling and Simulation in Materials Science and Engineering. 4: 23-32. DOI: 10.1088/0965-0393/4/1/004  0.314
1996 Farkas D, Schon C, De Lima M, Goldenstein H. Embedded atom computer simulation of lattice distortion and dislocation core structure and mobility in FeCr alloys Acta Materialia. 44: 409-419. DOI: 10.1016/1359-6454(95)00145-5  0.395
1996 Farkas D, Ternes K. Atomistic study of the interaction of lattice vacancies with grain boundaries in Ni3Al Intermetallics. 4: 171-177. DOI: 10.1016/0966-9795(95)00044-5  0.502
1996 Farkas D, Jones C. Dislocation core structure in the B2 phase of Nb-40%Ti-15%Al Computational Materials Science. 6: 295-302. DOI: 10.1016/0927-0256(96)00045-6  0.398
1996 Jones C, Farkas D. Embedded atom simulation of the B2 phase in Nb-Ti-Al Computational Materials Science. 6: 231-239. DOI: 10.1016/0927-0256(96)00015-8  0.389
1996 Farkas D, Politano R, Oppenheim IC. Atomistic structure of stepped surfaces Surface Science. 360: 282-288. DOI: 10.1016/0039-6028(96)00618-8  0.318
1995 Shastry V, Farkas D. Molecular Statics Simulation Of Crack Propagation In A-Fe Using Eam Potentials Mrs Proceedings. 409. DOI: 10.1557/Proc-409-75  0.348
1995 Shastry V, Farkas D. Representation of Finite Cracks by Dislocation Pileups: An Application to Atomic Simulation of Fracture Mrs Proceedings. 408. DOI: 10.1557/Proc-408-217  0.328
1995 Vailhe C, Farkas D. Trends in dislocation core structures and mechanical behavior in B2 aluminides Materials Research Society Symposium - Proceedings. 364: 395-400. DOI: 10.1557/Proc-364-395  0.36
1995 Farkas D, Mutasa B, Vailhe C, Ternes K. Interatomic potentials for B2 NiAl and martensitic phases Modelling and Simulation in Materials Science and Engineering. 3: 201-214. DOI: 10.1088/0965-0393/3/2/005  0.312
1995 Ternes JK, Farkas D, Kriz R. Stoichiometry effects on core structure and mobility in B2 NiAl Philosophical Magazine a: Physics of Condensed Matter, Structure, Defects and Mechanical Properties. 72: 1671-1696. DOI: 10.1080/01418619508243937  0.417
1995 Ternes K, Xie Z, Farkas D. Atomistic modelling of stoichiometry effects on dislocation core structure in NiAl Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 125-133. DOI: 10.1016/0921-5093(94)03226-2  0.404
1994 Jones CC, Ternes JK, Farkas D. Atomistic Simulation of Defect Structure in Ternary Intermetallics Mrs Proceedings. 364. DOI: 10.1557/Proc-364-267  0.356
1994 Panova J, Farkas D. Effects of Angular Dependent Terms in the Interatomic Potential on Defect Properties in TiAl Mrs Proceedings. 364. DOI: 10.1557/Proc-364-151  0.32
1994 Ternes K, Farkas D, Xie Z. Atomistic Simulation of Dislocation Motion as Determined by Core Structure Mrs Proceedings. 350. DOI: 10.1557/Proc-350-293  0.341
1994 Xie ZY, Farkas D. Atomistic structure and lattice effects of vacancies in Ni-Al intermetallics Journal of Materials Research. 9: 875-883. DOI: 10.1557/Jmr.1994.0875  0.317
1994 Pasianot R, Zie Z, Farkas D, Savino EJ. Computer simulation of (100) dislocation core structure in NiAl Modelling and Simulation in Materials Science and Engineering. 2: 383-394. DOI: 10.1088/0965-0393/2/3/008  0.396
1994 Farkas D, Rodriguez PL. Embedded atom study of dislocation core structure in Fe Scripta Metallurgica Et Materiala. 30: 921-925. DOI: 10.1016/0956-716X(94)90416-2  0.409
1994 Farkas D. Grain-boundary structures in hexagonal materials: Coincident and near coincident grain boundaries Metallurgical and Materials Transactions A. 25: 1337-1346. DOI: 10.1007/Bf02665467  0.494
1993 Farkas D, Vailhe C. Planar fault energies and dislocation core spreading in B2 NiAl Journal of Materials Research. 8: 3050-3058. DOI: 10.1557/Jmr.1993.3050  0.325
1993 Pasianot R, Xie Z, Farkas D, Savino E. Representation of atomistic dislocation core structures Scripta Metallurgica Et Materialia. 28: 319-324. DOI: 10.1016/0956-716X(93)90435-U  0.306
1993 Xie ZY, Vailhe C, Farkas D. Computer simulation of dislocation core structure of metastable 〈111〉 dislocations in NiAl Materials Science and Engineering A. 170: 59-65. DOI: 10.1016/0921-5093(93)90369-P  0.418
1992 Pasianot R, Savino EJ, Xie Z, Farkas D. Simple Flexible Boundary Conditions for the Atomistic Simulation of Dislocation Core Structure and Motion Mrs Proceedings. 291. DOI: 10.1557/Proc-291-85  0.439
1992 Farkas D, Xie ZY. Possibilities of Slip Modification in B2 NiAl Mrs Proceedings. 288. DOI: 10.1557/Proc-288-435  0.392
1992 Jang H, Farkas D, De Hosson JTM. Determination of grain boundary geometry using TEM Journal of Materials Research. 7: 1707-1717. DOI: 10.1557/Jmr.1992.1707  0.475
1991 Pasianot R, Farkas D, Savino EJ. Dislocation core structure in ordered intermetallic alloys Journal De Physique Iii. 1: 997-1014. DOI: 10.1051/Jp3:1991169  0.36
1991 Petton G, Farkas D. Grain boundary structure simulations in B2 ordered NiAl Scripta Metallurgica Et Materiala. 25: 55-60. DOI: 10.1016/0956-716X(91)90353-3  0.454
1990 Farkas D, Pasianot R, Savino EJ, Miracle D. Comparison of TEM Observations with Dislocation Core Structure Calcuiations in B2 Ordered Compounds Mrs Proceedings. 213. DOI: 10.1557/Proc-213-223  0.408
1990 JANG H, FARKAS D. GRAIN BOUNDARY STRUCTURE SIMULATION IN ORDERED Ni3Al Le Journal De Physique Colloques. 51: C1-191-C1-196. DOI: 10.1051/jphyscol:1990129  0.37
1990 Pasianot R, Farkas D, Savino E. Core structure of straight dislocations in Ni3Al Scripta Metallurgica Et Materialia. 24: 1669-1674. DOI: 10.1016/0956-716X(90)90525-L  0.315
1990 Jang H, Farkas D. Grain boundary structure simulation in ordered Ni3Al Journal De Physique. Colloque. 191-196.  0.398
1989 Farkas D, Jang H. Grain-boundary ordering, segregation, and melting transitions in a two-dimensional lattice-gas model Physical Review B. 39: 11769-11774. DOI: 10.1103/Physrevb.39.11769  0.447
1988 Farkas D. Statics and Dynamics of Grain Boundaries in Ni3Al Mrs Proceedings. 133. DOI: 10.1557/Proc-133-137  0.512
1988 Farkas D, Jang H, Lewus M, Versaci R, Savino EJ. Characterization and Statistical Distribution of Grain Boundaries in Ni3Al Mrs Proceedings. 122. DOI: 10.1557/Proc-122-455  0.48
1988 Farkas D, Lewus MO, Rangarajan V. Investigation of Σ distribution and relative energy of grain boundaries in ductile and brittle Ni3Al Scripta Metallurgica. 22: 1195-1200. DOI: 10.1016/S0036-9748(88)80130-3  0.346
1988 Farkas D, Savino EJ. Computer simulation of dislocation core structure in Ni3Al using local volume dependent potentials Scripta Metallurgica. 22: 557-560. DOI: 10.1016/0036-9748(88)90024-5  0.351
1986 Farkas D, Jang H. Order—Disorder Behavior of Grain Boundaries in a two Dimensional Mcdel Ordered Alloy Mrs Proceedings. 81. DOI: 10.1557/Proc-81-65  0.45
1986 Farkas D, Ran A. Space Group Theoretical Analysis of Grain Boundaries in Ordered Alloys Physica Status Solidi (a). 93: 45-55. DOI: 10.1002/pssa.2210930105  0.315
1986 Farkas D, Ran A. SPACE GROUP THEORETICAL ANALYSIS OF GRAIN BOUNDARIES IN ORDERED ALLOYS Physica Status Solidi (a) Applied Research. 93: 45-55.  0.342
1985 Farkas D. Coincident site lattice models for grain boundaries in ordered alloys Scripta Metallurgica. 19: 467-470. DOI: 10.1016/0036-9748(85)90115-2  0.479
1984 Farkas D. Structural Unit Models for High Angle Symmetrical Tilt Boundaries in Ordered Compounds with the Ll2 Structure Mrs Proceedings. 39. DOI: 10.1557/PROC-39-133  0.324
Show low-probability matches.