Year |
Citation |
Score |
2020 |
Tang K, Wang X, Dong K, Li Y, Li J, Sun B, Zhang X, Dames C, Qiu C, Yao J, Wu J. A Thermal Radiation Modulation Platform by Emissivity Engineering with Graded Metal-Insulator Transition. Advanced Materials (Deerfield Beach, Fla.). e1907071. PMID 32700403 DOI: 10.1002/Adma.201907071 |
0.403 |
|
2020 |
Yuan P, Wu JY, Ogletree DF, Urban JJ, Dames C, Ma Y. Adapting the electron beam from SEM as a quantitative heating source for nanoscale thermal metrology. Nano Letters. PMID 32267709 DOI: 10.1021/Acs.Nanolett.9B04940 |
0.586 |
|
2020 |
Pickel AD, Dames C. Size and shape effects on the measured peak temperatures of nanoscale hotspots Journal of Applied Physics. 128: 45103. DOI: 10.1063/5.0012167 |
0.357 |
|
2020 |
Zheng Q, Kaur S, Dames C, Prasher RS. Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials International Journal of Heat and Mass Transfer. 151: 119331. DOI: 10.1016/J.Ijheatmasstransfer.2020.119331 |
0.393 |
|
2019 |
Velarde G, Pandya S, Zhang L, Garcia D, Lupi E, Gao R, Wilbur JD, Dames C, Martin LW. Quantifying Intrinsic, Extrinsic, Dielectric, and Secondary Pyroelectric Responses in PbZrTiO Thin Films. Acs Applied Materials & Interfaces. PMID 31483605 DOI: 10.1021/Acsami.9B12191 |
0.351 |
|
2019 |
Choe HS, Prabhakar R, Wehmeyer G, Allen FI, Lee W, Jin L, Li Y, Yang P, Qiu C, Dames C, Scott M, Minor AM, Bahk JH, Wu J. Ion write micro-thermotics: programing thermal metamaterials at the microscale. Nano Letters. PMID 31059272 DOI: 10.1021/Acs.Nanolett.9B00984 |
0.475 |
|
2019 |
Xu X, Zhang Q, Hao M, Hu Y, Lin Z, Peng L, Wang T, Ren X, Wang C, Zhao Z, Wan C, Fei H, Wang L, Zhu J, Sun H, ... ... Dames C, et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science (New York, N.Y.). 363: 723-727. PMID 30765563 DOI: 10.1126/Science.Aav7304 |
0.458 |
|
2019 |
Liu C, Chen Y, Dames C. Electric-Field-Controlled Thermal Switch in Ferroelectric Materials Using First-Principles Calculations and Domain-Wall Engineering Physical Review Applied. 11. DOI: 10.1103/Physrevapplied.11.044002 |
0.348 |
|
2019 |
Kwon O, Wehmeyer G, Dames C. Modified Ballistic–Diffusive Equations for Obtaining Phonon Mean Free Path Spectrum from Ballistic Thermal Resistance: II. Derivation of Integral Equation Based on Ballistic Thermal Resistance Nanoscale and Microscale Thermophysical Engineering. 23: 334-347. DOI: 10.1080/15567265.2019.1628135 |
0.385 |
|
2019 |
Kwon O, Wehmeyer G, Dames C. Modified ballistic–diffusive equations for obtaining phonon mean free path spectrum from ballistic thermal resistance: I. Introduction and validation of the equations Nanoscale and Microscale Thermophysical Engineering. 23: 259-273. DOI: 10.1080/15567265.2019.1619885 |
0.311 |
|
2019 |
Pandya S, Velarde G, Zhang L, Wilbur JD, Smith A, Hanrahan B, Dames C, Martin LW. New approach to waste-heat energy harvesting: pyroelectric energy conversion Npg Asia Materials. 11. DOI: 10.1038/S41427-019-0125-Y |
0.384 |
|
2018 |
Pickel AD, Teitelboim A, Chan EM, Borys NJ, Schuck PJ, Dames C. Apparent self-heating of individual upconverting nanoparticle thermometers. Nature Communications. 9: 4907. PMID 30464256 DOI: 10.1038/S41467-018-07361-0 |
0.37 |
|
2018 |
Dames C. Ultrahigh thermal conductivity confirmed in boron arsenide. Science (New York, N.Y.). 361: 549-550. PMID 30093587 DOI: 10.1126/Science.Aau4793 |
0.467 |
|
2018 |
Pandya S, Wilbur J, Kim J, Gao R, Dasgupta A, Dames C, Martin LW. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nature Materials. PMID 29662157 DOI: 10.1038/S41563-018-0059-8 |
0.412 |
|
2018 |
Wehmeyer G, Pickel AD, Dames C. Onsager reciprocity relation for ballistic phonon heat transport in anisotropic thin films of arbitrary orientation Physical Review B. 98. DOI: 10.1103/Physrevb.98.014304 |
0.355 |
|
2018 |
Wehmeyer G, Bustillo KC, Minor AM, Dames C. Measuring temperature-dependent thermal diffuse scattering using scanning transmission electron microscopy Applied Physics Letters. 113: 253101. DOI: 10.1063/1.5066111 |
0.381 |
|
2018 |
Khan MI, Lubner SD, Ogletree DF, Dames C. Temperature dependence of secondary electron emission: A new route to nanoscale temperature measurement using scanning electron microscopy Journal of Applied Physics. 124: 195104. DOI: 10.1063/1.5050250 |
0.353 |
|
2018 |
Hao M, Li J, Park S, Moura S, Dames C. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy Nature Energy. 3: 899-906. DOI: 10.1038/S41560-018-0243-8 |
0.456 |
|
2018 |
Li T, Pickel AD, Yao Y, Chen Y, Zeng Y, Lacey SD, Li Y, Wang Y, Dai J, Wang Y, Yang B, Fuhrer MS, Marconnet A, Dames C, Drew DH, et al. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K Nature Energy. 3: 148-156. DOI: 10.1038/S41560-018-0086-3 |
0.703 |
|
2017 |
Chen Z, Wong C, Lubner S, Yee S, Miller J, Jang W, Hardin C, Fong A, Garay JE, Dames C. Retraction: A photon thermal diode. Nature Communications. 8: 16134. PMID 28825417 DOI: 10.1038/Ncomms16134 |
0.637 |
|
2017 |
Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban JJ, Zhang X, Dames C, Hartnoll SA, Delaire O, Wu J. Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science (New York, N.Y.). 355: 371-374. PMID 28126811 DOI: 10.1126/Science.Aag0410 |
0.611 |
|
2017 |
Lee J, Lee W, Wehmeyer G, Dhuey S, Olynick DL, Cabrini S, Dames C, Urban JJ, Yang P. Investigation of phonon coherence and backscattering using silicon nanomeshes. Nature Communications. 8: 14054. PMID 28051081 DOI: 10.1038/Ncomms14054 |
0.637 |
|
2017 |
Pandya S, Wilbur JD, Bhatia B, Damodaran AR, Monachon C, Dasgupta A, King WP, Dames C, Martin LW. Direct Measurement of Pyroelectric and Electrocaloric Effects in Thin Films Physical Review Applied. 7. DOI: 10.1103/Physrevapplied.7.034025 |
0.381 |
|
2017 |
Wehmeyer G, Yabuki T, Monachon C, Wu J, Dames C. Thermal diodes, regulators, and switches: Physical mechanisms and potential applications Applied Physics Reviews. 4: 041304. DOI: 10.1063/1.5001072 |
0.474 |
|
2017 |
Chen Z, Wong C, Lubner S, Yee S, Miller J, Jang W, Hardin C, Fong A, Garay JE, Dames C. Correspondence: Reply to ‘The experimental requirements for a photon thermal diode’ Nature Communications. 8. DOI: 10.1038/Ncomms16136 |
0.653 |
|
2016 |
Wei Z, Wehmeyer G, Dames C, Chen Y. Geometric tuning of thermal conductivity in three-dimensional anisotropic phononic crystals. Nanoscale. PMID 27424558 DOI: 10.1039/C6Nr04199J |
0.475 |
|
2016 |
Kilbane JD, Chan EM, Monachon C, Borys NJ, Levy ES, Pickel AD, Urban JJ, Schuck PJ, Dames C. Far-field optical nanothermometry using individual sub-50 nm upconverting nanoparticles. Nanoscale. PMID 27216164 DOI: 10.1039/C6Nr01479H |
0.523 |
|
2016 |
Bao W, Pickel AD, Zhang Q, Chen Y, Yao Y, Wan J, Fu KK, Wang Y, Dai J, Zhu H, Drew D, Fuhrer M, Dames C, Hu L. Flexible, High Temperature, Planar Lighting with Large Scale Printable Nanocarbon Paper. Advanced Materials (Deerfield Beach, Fla.). PMID 27000725 DOI: 10.1002/Adma.201506116 |
0.33 |
|
2016 |
Monachon C, Weber L, Dames C. Thermal Boundary Conductance: A Materials Science Perspective Annual Review of Materials Research. 46: 433-463. DOI: 10.1146/Annurev-Matsci-070115-031719 |
0.405 |
|
2016 |
Dames C. Cost optimization of thermoelectric materials for power generation: The case for ZT at (almost) any cost Scripta Materialia. 111: 16-22. DOI: 10.1016/J.Scriptamat.2015.06.018 |
0.325 |
|
2015 |
Mishra V, Hardin CL, Garay JE, Dames C. A 3 omega method to measure an arbitrary anisotropic thermal conductivity tensor. The Review of Scientific Instruments. 86: 054902. PMID 26026546 DOI: 10.1063/1.4918800 |
0.434 |
|
2015 |
Suh J, Yu KM, Fu D, Liu X, Yang F, Fan J, Smith DJ, Zhang YH, Furdyna JK, Dames C, Walukiewicz W, Wu J. Simultaneous Enhancement of Electrical Conductivity and Thermopower of Bi₂Te₃ by Multifunctionality of Native Defects. Advanced Materials (Deerfield Beach, Fla.). 27: 3681-6. PMID 25974062 DOI: 10.1002/Adma.201501350 |
0.37 |
|
2015 |
Lubner SD, Choi J, Wehmeyer G, Waag B, Mishra V, Natesan H, Bischof JC, Dames C. Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues. The Review of Scientific Instruments. 86: 014905. PMID 25638111 DOI: 10.1063/1.4905680 |
0.372 |
|
2015 |
Hodges W, Natesan H, Bischof J, Dames C. 3ω measurements for tracking freezing fronts in biological applications Materials Research Society Symposium Proceedings. 1779: 15-20. DOI: 10.1557/Opl.2015.703 |
0.334 |
|
2015 |
Yang F, Dames C. Heating-frequency-dependent thermal conductivity: An analytical solution from diffusive to ballistic regime and its relevance to phonon scattering measurements Physical Review B - Condensed Matter and Materials Physics. 91. DOI: 10.1103/Physrevb.91.165311 |
0.445 |
|
2015 |
Shi L, Dames C, Lukes JR, Reddy P, Duda J, Cahill DG, Lee J, Marconnet A, Goodson KE, Bahk JH, Shakouri A, Prasher RS, Felts J, King WP, Han B, et al. Evaluating broader impacts of nanoscale thermal transport research Nanoscale and Microscale Thermophysical Engineering. 19: 127-165. DOI: 10.1080/15567265.2015.1031857 |
0.705 |
|
2015 |
Chen Z, Dames C. An anisotropic model for the minimum thermal conductivity Applied Physics Letters. 107. DOI: 10.1063/1.4935467 |
0.386 |
|
2015 |
Hori T, Shiomi J, Dames C. Effective phonon mean free path in polycrystalline nanostructures Applied Physics Letters. 106. DOI: 10.1063/1.4918703 |
0.335 |
|
2015 |
Wieg AT, Kodera Y, Wang Z, Dames C, Garay JE. Thermomechanical properties of rare-earth-doped AlN for laser gain media: The role of grain boundaries and grain size Acta Materialia. 86: 148-156. DOI: 10.1016/J.Actamat.2014.11.045 |
0.376 |
|
2014 |
Chen Z, Wong C, Lubner S, Yee S, Miller J, Jang W, Hardin C, Fong A, Garay JE, Dames C. A photon thermal diode. Nature Communications. 5: 5446. PMID 25399761 DOI: 10.1038/Ncomms6446 |
0.703 |
|
2014 |
Guo H, Khan MI, Cheng C, Fan W, Dames C, Wu J, Minor AM. Vanadium dioxide nanowire-based microthermometer for quantitative evaluation of electron beam heating. Nature Communications. 5: 4986. PMID 25307160 DOI: 10.1038/Ncomms5986 |
0.373 |
|
2014 |
Yee SK, Leblanc S, Goodson KE, Dames C. Reply to the 'comment on "$ per W metrics for thermoelectric power generation: Beyond ZT"' by G. Nunes, Jr, Energy Environ. Sci., 2014, 7, DOI: 10.1039/C3EE43700K Energy and Environmental Science. 7: 3441-3442. DOI: 10.1039/C4Ee01119H |
0.664 |
|
2014 |
Leblanc S, Yee SK, Scullin ML, Dames C, Goodson KE. Material and manufacturing cost considerations for thermoelectrics Renewable and Sustainable Energy Reviews. 32: 313-327. DOI: 10.1016/J.Rser.2013.12.030 |
0.645 |
|
2013 |
Dames C. MEASURING THE THERMAL CONDUCTIVITY OF THIN FILMS: 3 OMEGA AND RELATED ELECTROTHERMAL METHODS Annual Review of Heat Transfer. 16: 7-49. DOI: 10.1615/Annualrevheattransfer.V16.20 |
0.391 |
|
2013 |
Choi J, Lubner SD, Natesan H, Hasegawa Y, Fong A, Dames C, Bischof JC. Thermal conductivity measurements of thin biological tissues using a microfabricated 3-omega sensor Journal of Medical Devices, Transactions of the Asme. 7. DOI: 10.1115/1.4024322 |
0.338 |
|
2013 |
Angle JP, Wang Z, Dames C, Mecartney ML. Comparison of two-phase thermal conductivity models with experiments on dilute ceramic composites Journal of the American Ceramic Society. 96: 2935-2942. DOI: 10.1111/Jace.12488 |
0.43 |
|
2013 |
Chen Z, Wei Z, Chen Y, Dames C. Anisotropic Debye model for the thermal boundary conductance Physical Review B - Condensed Matter and Materials Physics. 87. DOI: 10.1103/Physrevb.87.125426 |
0.409 |
|
2013 |
Yang F, Dames C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures Physical Review B - Condensed Matter and Materials Physics. 87. DOI: 10.1103/Physrevb.87.035437 |
0.417 |
|
2013 |
Cola BA, Daiguji H, Dames C, Fang N, Fushinobu K, Inoue S, Kikugawa G, Kohno M, Kumar S, Li DY, Lukes JR, Malen JA, McGaughey AJH, Nakabeppu O, Pipe K, et al. Report on the seventh U.S.-Japan Joint seminar on nanoscale transport phenomena-science and engineering Nanoscale and Microscale Thermophysical Engineering. 17: 25-49. DOI: 10.1080/15567265.2012.745913 |
0.37 |
|
2013 |
Jang W, Bao W, Jing L, Lau CN, Dames C. Thermal conductivity of suspended few-layer graphene by a modified T-bridge method Applied Physics Letters. 103. DOI: 10.1063/1.4821941 |
0.382 |
|
2013 |
Wei Z, Chen Y, Dames C. Negative correlation between in-plane bonding strength and cross-plane thermal conductivity in a model layered material Applied Physics Letters. 102. DOI: 10.1063/1.4773372 |
0.383 |
|
2013 |
Yee SK, Leblanc S, Goodson KE, Dames C. $ per W metrics for thermoelectric power generation: Beyond ZT Energy and Environmental Science. 6: 2561-2571. DOI: 10.1039/C3Ee41504J |
0.623 |
|
2013 |
Hasegawa Y, Murata M, Tsunemi F, Saito Y, Shirota K, Komine T, Dames C, Garay JE. Thermal conductivity of an individual bismuth nanowire covered with a quartz template using a 3-omega technique Journal of Electronic Materials. 42: 2048-2055. DOI: 10.1007/s11664-013-2520-4 |
0.396 |
|
2012 |
Bao W, Myhro K, Zhao Z, Chen Z, Jang W, Jing L, Miao F, Zhang H, Dames C, Lau CN. In situ observation of electrostatic and thermal manipulation of suspended graphene membranes. Nano Letters. 12: 5470-4. PMID 23043470 DOI: 10.1021/Nl301836Q |
0.329 |
|
2012 |
Dames C. Thermal materials: Pulling together to control heat flow. Nature Nanotechnology. 7: 82-3. PMID 22306894 DOI: 10.1038/Nnano.2012.4 |
0.445 |
|
2012 |
Toberer ES, Baranowski LL, Dames C. Advances in thermal conductivity Annual Review of Materials Research. 42: 179-209. DOI: 10.1146/Annurev-Matsci-070511-155040 |
0.455 |
|
2012 |
Wieg AT, Kodera Y, Wang Z, Imai T, Dames C, Garay JE. Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity Applied Physics Letters. 101. DOI: 10.1063/1.4751856 |
0.461 |
|
2012 |
Wei Z, Chen Y, Dames C. Wave packet simulations of phonon boundary scattering at graphene edges Journal of Applied Physics. 112. DOI: 10.1063/1.4740065 |
0.311 |
|
2011 |
Wang Z, Alaniz JE, Jang W, Garay JE, Dames C. Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. Nano Letters. 11: 2206-13. PMID 21553856 DOI: 10.1021/Nl1045395 |
0.559 |
|
2011 |
Jang W, Chen Z, Bao W, Lau CN, Dames C. Correction to Thickness-Dependent Thermal Conductivity of Encased Graphene and Ultrathin Graphite Nano Letters. 11: 3049-3049. DOI: 10.1021/Nl202062S |
0.391 |
|
2010 |
Jang W, Chen Z, Bao W, Lau CN, Dames C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Letters. 10: 3909-13. PMID 20836537 DOI: 10.1021/Nl101613U |
0.392 |
|
2010 |
Yang F, Ikeda T, Snyder GJ, Dames C. Effective thermal conductivity of polycrystalline materials with randomly oriented superlattice grains Journal of Applied Physics. 108. DOI: 10.1063/1.3457334 |
0.478 |
|
2009 |
Chen CC, Bao W, Theiss J, Dames C, Lau CN, Cronin SB. Raman spectroscopy of ripple formation in suspended graphene. Nano Letters. 9: 4172-6. PMID 19807131 DOI: 10.1021/Nl9023935 |
0.323 |
|
2009 |
Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau CN. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nature Nanotechnology. 4: 562-6. PMID 19734927 DOI: 10.1038/Nnano.2009.191 |
0.315 |
|
2009 |
Miller J, Jang W, Dames C. Thermal rectification by ballistic phonons in asymmetric nanostructures Proceedings of the Asme Summer Heat Transfer Conference 2009, Ht2009. 2: 317-326. DOI: 10.1115/HT2009-88488 |
0.368 |
|
2009 |
Dames C. Solid-state thermal rectification with existing bulk materials Journal of Heat Transfer. 131: 1-7. DOI: 10.1115/1.3089552 |
0.52 |
|
2009 |
Chen Z, Jang W, Bao W, Lau CN, Dames C. Thermal contact resistance between graphene and silicon dioxide Applied Physics Letters. 95. DOI: 10.1063/1.3245315 |
0.376 |
|
2009 |
Miller J, Jang W, Dames C. Thermal rectification by ballistic phonons 2008 Proceedings of 3rd Energy Nanotechnology International Conference, Enic 2008. 139-141. |
0.378 |
|
2008 |
Dames C. A broad range of phonon mean free paths is important for heat conduction 2008 Proceedings of the Asme Micro/Nanoscale Heat Transfer International Conference, Mnht 2008. 41-42. DOI: 10.1115/MNHT2008-52270 |
0.305 |
|
2008 |
Dames C, Chen G. Special issue on energy nanotechnology Journal of Heat Transfer. 130. DOI: 10.1115/1.2818789 |
0.32 |
|
2008 |
Borca-Tasciuc T, Cahill DG, Chen G, Cronin SB, Daiguji H, Dames C, Fushinobu K, Inoue T, Majumdar A, Maruyama S, Miyazaki K, Matsumoto M, Norris PM, Shi L, Shibahara M, et al. Report on 6th U.S.-Japan joint seminar on nanoscale transport phenomena - Science and engineering Nanoscale and Microscale Thermophysical Engineering. 12: 273-293. DOI: 10.1080/15567260802591928 |
0.482 |
|
2007 |
Dames C, Chen S, Harris CT, Huang JY, Ren ZF, Dresselhaus MS, Chen G. A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope. The Review of Scientific Instruments. 78: 104903. PMID 17979450 DOI: 10.1063/1.2785848 |
0.469 |
|
2006 |
Chen G, Dames C, Henry A. Thermoelectric energy conversion in nanostructures Technical Digest - International Electron Devices Meeting, Iedm. DOI: 10.1109/IEDM.2006.346837 |
0.673 |
|
2005 |
Dames C, Chen G. Thermal conductivity and specific heat measurements of single nanowires Proceedings of the Asme Summer Heat Transfer Conference. 1: 489-493. DOI: 10.1115/HT2005-72780 |
0.357 |
|
2005 |
Poudel B, Wang WZ, Dames C, Huang JY, Kunwar S, Wang DZ, Banerjee D, Chen G, Ren ZF. Formation of crystallized titania nanotubes and their transformation into nanowires Nanotechnology. 16: 1935-1940. DOI: 10.1088/0957-4484/16/9/086 |
0.339 |
|
2005 |
Dames C, Chen G. 1ω, 2ω, and 3ω methods for measurements of thermal properties Review of Scientific Instruments. 76: 1-14. DOI: 10.1063/1.2130718 |
0.466 |
|
2005 |
Dames C, Poudel B, Wang WZ, Huang JY, Ren ZF, Sun Y, Oh JI, Opeil C, Naughton MJ, Chen G. Low-dimensional phonon specific heat of titanium dioxide nanotubes Applied Physics Letters. 87. DOI: 10.1063/1.1990269 |
0.438 |
|
2004 |
Poudel B, Wang WZ, Dames C, Huang JY, Kunwar S, Wang DZ, Banerjee D, Chen G, Ren ZF. Synthesis, Characterization and Thermal Stability of Highly Crystallized Titania Nanotubes Mrs Proceedings. 836. DOI: 10.1557/Proc-836-L1.8 |
0.365 |
|
2004 |
Dames C, Chen G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires Journal of Applied Physics. 95: 682-693. DOI: 10.1063/1.1631734 |
0.469 |
|
2004 |
Chen G, Narayanaswamy A, Dames C. Engineering nanoscale phonon and photon transport for direct energy conversion Superlattices and Microstructures. 35: 161-172. DOI: 10.1016/J.Spmi.2003.08.001 |
0.67 |
|
2003 |
Dames C, Dresselhaus MS, Chen G. Phonon Thermal Conductivity of Superlattice Nanowires for Thermoelectric Applications Mrs Proceedings. 793. DOI: 10.1557/Proc-793-S1.2 |
0.486 |
|
2003 |
Chen G, Dames C, Harris T, Borca-Tasiuc D, Yang RG, Yang B, Liu WL, Song D, Takashiri M. Thermal conductivity reduction mechanisms in superlattices International Conference On Thermoelectrics, Ict, Proceedings. 2003: 336-341. DOI: 10.1109/ICT.2003.1287517 |
0.365 |
|
2003 |
Dames C, Dresselhaus MS, Chen G. Phonon thermal conductivity of superlattice nanowires for thermoelectric applications Materials Research Society Symposium - Proceedings. 793: 15-20. |
0.328 |
|
2002 |
Dames C, Chen G. Modeling the thermal conductivity of a sige segmented nanowire International Conference On Thermoelectrics, Ict, Proceedings. 2002: 317-320. DOI: 10.1109/ICT.2002.1190329 |
0.302 |
|
Show low-probability matches. |