Year |
Citation |
Score |
2012 |
Lane JW, Aumiller DL, Hochreiter LE, Cheung FB. Three-field countercurrent flow limitation model Nuclear Technology. 177: 176-187. DOI: 10.13182/Nt12-A13364 |
0.567 |
|
2010 |
Lane JW, Aumiller DL, Cheung FB, Hochreiter LE. A self-consistent three-field constitutive model set for predicting co-current annular flow Nuclear Engineering and Design. 240: 3294-3308. DOI: 10.1016/J.Nucengdes.2010.06.013 |
0.517 |
|
2009 |
Narayanan S, Cheung F, Hochreiter L. Optimal Gap Size for Downward Facing Boiling and Steam Venting in a Hemispherical Annular Channel Nuclear Technology. 167: 178-186. DOI: 10.13182/Nt09-A8861 |
0.519 |
|
2008 |
Ergun S, Williams JG, Hochreiter LE, Wiersema H, Slootman M, Stempniewicz M. COBRA-TF Analysis of the High Flux Reactor Hot Channel for a Postulated Large-Break Loss-of-Coolant Accident Nuclear Technology. 163: 273-284. DOI: 10.13182/Nt08-A3987 |
0.736 |
|
2008 |
Lane JW, Hochreiter LE, Aumiller DL, Kushner RJ. Performance assessment of the two-phase pump degradation model in the RELAP5-3D transient safety analysis code Nuclear Technology. 161: 277-285. DOI: 10.13182/Nt08-A3926 |
0.441 |
|
2008 |
Ergun S, Hochreiter LE, Mahaffy JH. Modifications to COBRA-TF to model dispersed flow film boiling with two flow, four field Eulerian-Eulerian approach - Part 2 Annals of Nuclear Energy. 35: 1671-1676. DOI: 10.1016/J.Anucene.2008.02.014 |
0.768 |
|
2008 |
Ergun S, Hochreiter LE, Mahaffy JH. Modifications to COBRA-TF to model dispersed flow film boiling with two flow, four field Eulerian-Eulerian approach - Part 1 Annals of Nuclear Energy. 35: 1663-1670. DOI: 10.1016/J.Anucene.2008.02.013 |
0.776 |
|
2006 |
Ergun S, Williams JG, Hochreiter LE, Wiersema H, Slootman M, Stempniewicz M. Validation of COBRA-TF Critical Heat Flux Predictions for a Small-Hydraulic-Diameter Geometry Under Natural Boiling Conditions Nuclear Technology. 156: 69-74. DOI: 10.13182/Nt06-A3774 |
0.774 |
|
2005 |
Campbell RL, Cimbala JM, Hochreiter LE. Computational fluid dynamics prediction of grid spacer thermal-hydraulic performance with comparison to experimental results Nuclear Technology. 149: 49-61. DOI: 10.13182/Nt05-A3578 |
0.489 |
|
2003 |
Holowach MJ, Hochreiter LE, Mahaffy JH, Cheung FB. Modeling of droplet entrainment phenomena at a quench front International Journal of Heat and Fluid Flow. 24: 902-918. DOI: 10.1016/S0142-727X(03)00085-7 |
0.578 |
|
2003 |
Frepoli C, Mahaffy JH, Hochreiter LE. A moving subgrid model for simulation of reflood heat transfer Nuclear Engineering and Design. 224: 131-148. DOI: 10.1016/S0029-5493(03)00101-8 |
0.595 |
|
2003 |
Holowach MJ, Hochreiter LE, Cheung FB, Aumiller DL, Houser RJ. Scaling of quench front and entrainment-related phenomena Nuclear Engineering and Design. 223: 197-209. DOI: 10.1016/S0029-5493(03)00043-8 |
0.375 |
|
2002 |
Holowach MJ, Hochreiter LE, Cheung F, Aumiller DL. Critical Heat Flux During Reflood Transients in Small-Hydraulic-Diameter Geometries Nuclear Technology. 140: 18-27. DOI: 10.13182/Nt02-A3320 |
0.531 |
|
2002 |
Holowach MJ, Hochreiter LE, Cheung FB. A physical model for predicting annular film flow droplet entrainment in heat transfer systems Asme International Mechanical Engineering Congress and Exposition, Proceedings. 89-101. DOI: 10.1115/Imece2002-39279 |
0.599 |
|
2002 |
Sridharan A, Hochreiter LE, Cheung FB, Webb RL. Effect of chemical cleaning on steam generator tube performance Heat Transfer Engineering. 23: 38-47. DOI: 10.1080/014576302753249598 |
0.461 |
|
2002 |
Holowach MJ, Hochreiter LE, Cheung FB. A model for droplet entrainment in heated annular flow International Journal of Heat and Fluid Flow. 23: 807-822. DOI: 10.1016/S0142-727X(02)00194-7 |
0.598 |
|
1998 |
Zhang J, Bajorek SM, Kemper RM, Nissley ME, Petkov N, Hochreiter LE. Application of the W̱COBRA/TRAC best-estimate methodology to the AP600 large-break LOCA analysis Nuclear Engineering and Design. 186: 279-301. DOI: 10.1016/S0029-5493(98)00279-9 |
0.513 |
|
1998 |
Young MY, Bajorek SM, Nissley ME, Hochreiter LE. Application of code scaling applicability and uncertainty methodology to the large break loss of coolant Nuclear Engineering and Design. 186: 39-52. DOI: 10.1016/S0029-5493(98)00217-9 |
0.428 |
|
Show low-probability matches. |