Year |
Citation |
Score |
2020 |
Moon H, Williams TP, Lee H, Park M. Predicting project cost overrun levels in bidding stage using ensemble learning Journal of Asian Architecture and Building Engineering. 1-14. DOI: 10.1080/13467581.2020.1765171 |
0.392 |
|
2020 |
Moon H, Kim K, Lee H, Park M, Williams TP, Son B, Chun J. Cost Performance Comparison of Design-Build and Design-Bid-Build for Building and Civil Projects Using Mediation Analysis Journal of Construction Engineering and Management-Asce. 146: 4020113. DOI: 10.1061/(Asce)Co.1943-7862.0001873 |
0.352 |
|
2014 |
Williams TP, Gong J. Predicting construction cost overruns using text mining, numerical data and ensemble classifiers Automation in Construction. 43: 23-29. DOI: 10.1016/J.Autcon.2014.02.014 |
0.474 |
|
2012 |
Hughes D, Williams T, Ren Z. Differing perspectives on collaboration in construction Construction Innovation: Information, Process, Management. 12: 355-368. DOI: 10.1108/14714171211244613 |
0.349 |
|
2012 |
Hughes D, Williams T, Ren Z. Is incentivisation significant in ensuring successful partnered projects Engineering, Construction and Architectural Management. 19: 306-319. DOI: 10.1108/09699981211219625 |
0.417 |
|
2012 |
Art Chaovalitwongse W, Wang W, Williams TP, Chaovalitwongse P. Data mining framework to optimize the bid selection policy for competitively bid highway construction projects Journal of Construction Engineering and Management. 138: 277-286. DOI: 10.1061/(Asce)Co.1943-7862.0000386 |
0.458 |
|
2008 |
Williams TP, Kangari R. A Knowledge‐Based System for Planning a Construction Operation Computer-Aided Civil and Infrastructure Engineering. 3: 345-353. DOI: 10.1111/J.1467-8667.1988.Tb00176.X |
0.572 |
|
2007 |
Williams TP. Application of treemaps to the analysis of competitively bid project cost overruns Construction Innovation: Information, Process, Management. 7: 340-356. DOI: 10.1108/14714170710780093 |
0.451 |
|
2007 |
Williams T, Bernold L, Lu H. Adoption patterns of advanced information technologies in the construction industries of the United States and Korea Journal of Construction Engineering and Management. 133: 780-790. DOI: 10.1061/(Asce)0733-9364(2007)133:10(780) |
0.342 |
|
2005 |
Williams TP. Bidding ratios to predict highway project costs Engineering, Construction and Architectural Management. 12: 38-51. DOI: 10.1108/09699980510576880 |
0.474 |
|
2005 |
Williams TP, Lakshminarayanan S, Sackrowitz H. Analyzing Bidding Statistics To Predict Completed Project Cost Computing in Civil Engineering. 1-10. DOI: 10.1061/40794(179)157 |
0.461 |
|
2005 |
Williams TP. Closure to “Modeling Dredging Project Cost Variations” by Trefor P. Williams Journal of Waterway Port Coastal and Ocean Engineering-Asce. 131: 87-87. DOI: 10.1061/(Asce)0733-950X(2005)131:2(87) |
0.369 |
|
2003 |
Williams TP. Applying handheld computers in the construction industry Practice Periodical On Structural Design and Construction. 8: 226-231. DOI: 10.1061/(Asce)1084-0680(2003)8:4(226) |
0.37 |
|
2003 |
Williams TP. Modeling dredging project cost variations Journal of Waterway Port Coastal and Ocean Engineering-Asce. 129: 279-285. DOI: 10.1061/(Asce)0733-950X(2003)129:6(279) |
0.455 |
|
2003 |
Williams TP. Predicting final cost for competitively bid construction projects using regression models International Journal of Project Management. 21: 593-599. DOI: 10.1016/S0263-7863(03)00004-8 |
0.453 |
|
2002 |
Williams TP. Using a Handheld Computer to Provide Documentation for Construction and Maintenance of Transportation Infrastructure Transportation Research Record. 1813: 314-321. DOI: 10.3141/1813-37 |
0.333 |
|
2002 |
Williams TP. Predicting completed project cost using bidding data Construction Management and Economics. 20: 225-235. DOI: 10.1080/01446190110112838 |
0.445 |
|
2001 |
Wright MG, Williams TP. Using bidding statistics to predict completed construction cost The Engineering Economist. 46: 114-128. DOI: 10.1080/00137910108967565 |
0.475 |
|
2001 |
Kiwus CH, Williams TP. Application of TQM to Environmental Construction Journal of Management in Engineering. 17: 176-184. DOI: 10.1061/(Asce)0742-597X(2001)17:3(176) |
0.45 |
|
1998 |
Luxhoj JT, Williams TP. A Bayesian belief network for aircraft tire condition assessment Sae Technical Papers. DOI: 10.4271/981213 |
0.348 |
|
1997 |
Luxhøj JT, Williams TP, Shyur H. Comparison of regression and neural network models for prediction of inspection profiles for aging aircraft Iie Transactions. 29: 91-101. DOI: 10.1080/07408179708966316 |
0.342 |
|
1996 |
Luxhøj JT, Williams TP. Integrated decision support for aviation safety inspectors Finite Elements in Analysis and Design. 23: 381-403. DOI: 10.1016/S0168-874X(96)80018-7 |
0.346 |
|
1996 |
Shyur HJ, Luxhoj JT, Williams TP. Using neural networks to predict component inspection requirements for aging aircraft Computers and Industrial Engineering. 30: 257-267. DOI: 10.1016/0360-8352(95)00170-0 |
0.347 |
|
1994 |
Williams TP. Applying Portable Computing and Hypermedia to Construction Journal of Management in Engineering. 10: 41-45. DOI: 10.1061/(Asce)9742-597X(1994)10:3(41) |
0.347 |
|
1994 |
Williams TP. Predicting Changes in Construction Cost Indexes Using Neural Networks Journal of Construction Engineering and Management-Asce. 120: 306-320. DOI: 10.1061/(Asce)0733-9364(1994)120:2(306) |
0.378 |
|
1991 |
Williams TP. Hypertext Data Base Applications in Construction Journal of Construction Engineering and Management-Asce. 117: 460-467. DOI: 10.1061/(Asce)0733-9364(1991)117:3(460) |
0.376 |
|
1990 |
Williams TP, Parks RC, LiMarzi JJ. Expert System for Asphalt‐Paving Construction Inspection Journal of Computing in Civil Engineering. 4: 370-380. DOI: 10.1061/(Asce)0887-3801(1990)4:4(370) |
0.407 |
|
Show low-probability matches. |