Guiliang Tang, Ph.D. - Publications

Affiliations: 
2000 Weizmann Institute of Science, Rehovot, Israel 
Area:
Plant Physiology

77 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Teotia S, Wang X, Zhou N, Wang M, Liu H, Qin J, Han D, Li C, Li CE, Pan S, Tang H, Kang W, Zhang Z, Tang X, Peng T, ... Tang G, et al. A high-efficiency gene silencing in plants using two-hit asymmetrical artificial MicroRNAs. Plant Biotechnology Journal. PMID 37392408 DOI: 10.1111/pbi.14091  0.327
2022 Scarpin MR, Busche M, Martinez RE, Harper LC, Reiser L, Szakonyi D, Merchante C, Lan T, Xiong W, Mo B, Tang G, Chen X, Bailey-Serres J, Browning KS, Brunkard JO. An updated nomenclature for plant ribosomal protein genes. The Plant Cell. PMID 36423343 DOI: 10.1093/plcell/koac333  0.413
2022 Lan T, Xiong W, Chen X, Mo B, Tang G. Plant cytoplasmic ribosomal proteins: an update on classification, nomenclature, evolution and resources. The Plant Journal : For Cell and Molecular Biology. PMID 35000252 DOI: 10.1111/tpj.15667  0.335
2021 Chen J, Teotia S, Lan T, Tang G. MicroRNA Techniques: Valuable Tools for Agronomic Trait Analyses and Breeding in Rice. Frontiers in Plant Science. 12: 744357. PMID 34616418 DOI: 10.3389/fpls.2021.744357  0.384
2020 Li N, Yang T, Guo Z, Wang Q, Chai M, Wu M, Li X, Li W, Li G, Tang J, Tang G, Zhang Z. Maize microRNA166 Inactivation Confers Plant Development and Abiotic Stress Resistance. International Journal of Molecular Sciences. 21. PMID 33327508 DOI: 10.3390/ijms21249506  0.385
2020 Yang T, Wang Y, Liu H, Zhang W, Chai M, Tang G, Zhang Z. MicroRNA1917-CTR1-LIKE PROTEIN KINASE 4 impacts fruit development via tuning ethylene synthesis and response. Plant Science : An International Journal of Experimental Plant Biology. 291: 110334. PMID 31928661 DOI: 10.1016/J.Plantsci.2019.110334  0.422
2019 Peng T, Teotia S, Tang G, Zhao Q. MicroRNAs meet with quantitative trait loci: Small powerful players in regulating quantitative yield traits in rice. Wiley Interdisciplinary Reviews. Rna. e1556. PMID 31207122 DOI: 10.1002/Wrna.1556  0.379
2019 Wang Y, Wang Z, Yang W, Xie X, Cheng H, Qin L, Tang G, Huang B. The Degradation of Fungal microRNAs Triggered by Short Tandem Target Mimic (STTM) is via the small RNA degrading nuclease. Applied and Environmental Microbiology. PMID 30824452 DOI: 10.1128/Aem.03132-18  0.324
2019 Yang T, Wang Y, Teotia S, Wang Z, Shi C, Sun H, Gu Y, Zhang Z, Tang G. The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis. Scientific Reports. 9: 2832. PMID 30808969 DOI: 10.1038/S41598-019-39397-7  0.41
2018 Tian L, Liu H, Ren L, Ku L, Wu L, Li M, Wang S, Zhou J, Song X, Zhang J, Dou D, Liu H, Tang G, Chen Y. MicroRNA 399 as a potential integrator of photo-response, phosphate homeostasis, and sucrose signaling under long day condition. Bmc Plant Biology. 18: 290. PMID 30463514 DOI: 10.1186/S12870-018-1460-9  0.414
2018 Peng T, Qiao M, Liu H, Teotia S, Zhang Z, Zhao Y, Wang B, Zhao D, Shi L, Zhang C, Le B, Rogers K, Gunasekara C, Duan H, Gu Y, ... ... Tang G, et al. A Resource for Inactivation of microRNAs Using Short Tandem Target Mimic Technology in Model and Crop Plants. Molecular Plant. PMID 30243763 DOI: 10.1016/J.Molp.2018.09.003  0.446
2018 Wang Y, Shi C, Yang T, Zhao L, Chen J, Zhang N, Ren Y, Tang G, Cui D, Chen F. High-throughput sequencing revealed that microRNAs were involved in the development of superior and inferior grains in bread wheat. Scientific Reports. 8: 13854. PMID 30218081 DOI: 10.1038/S41598-018-31870-Z  0.398
2018 Zhao YF, Peng T, Sun HZ, Teotia S, Wen HL, Du YX, Zhang J, Li JZ, Tang GL, Xue HW, Zhao QZ. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice. Plant Biotechnology Journal. PMID 30183128 DOI: 10.1111/Pbi.13009  0.424
2018 Yang T, Wang Y, Teotia S, Zhang Z, Tang G. The Making of Leaves: How Small RNA Networks Modulate Leaf Development. Frontiers in Plant Science. 9: 824. PMID 29967634 DOI: 10.3389/Fpls.2018.00824  0.398
2018 Liu H, Yu H, Tang G, Huang T. Small but powerful: function of microRNAs in plant development. Plant Cell Reports. PMID 29318384 DOI: 10.1007/S00299-017-2246-5  0.427
2018 Song C, Qin X, Zhou Q, Wang Z, Liu W, Li J, Huang L, Chen Y, Tang G, Zhao D, Wang Z. PlantES: A Plant Electrophysiological Multi-Source Data Online Analysis and Sharing Platform Applied Sciences. 8: 2269. DOI: 10.3390/App8112269  0.434
2017 Zhao Y, Wen H, Teotia S, Du Y, Zhang J, Li J, Sun H, Tang G, Peng T, Zhao Q. Suppression of microRNA159 impacts multiple agronomic traits in rice (Oryza sativa L.). Bmc Plant Biology. 17: 215. PMID 29162059 DOI: 10.1186/S12870-017-1171-7  0.464
2017 Teotia S, Zhang D, Tang G. Knockdown of Rice microRNA166 by Short Tandem Target Mimic (STTM). Methods in Molecular Biology (Clifton, N.J.). 1654: 337-349. PMID 28986803 DOI: 10.1007/978-1-4939-7231-9_25  0.433
2017 Tian B, Wang S, Todd TC, Johnson CD, Tang G, Trick HN. Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing. Bmc Genomics. 18: 572. PMID 28768484 DOI: 10.1186/S12864-017-3963-4  0.41
2017 Teotia S, Tang G. Silencing of Stress-Regulated miRNAs in Plants by Short Tandem Target Mimic (STTM) Approach. Methods in Molecular Biology (Clifton, N.J.). 1631: 337-348. PMID 28735409 DOI: 10.1007/978-1-4939-7136-7_22  0.406
2017 Zhang H, Zhang J, Yan J, Gou F, Mao Y, Tang G, Botella JR, Zhu JK. Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proceedings of the National Academy of Sciences of the United States of America. PMID 28461499 DOI: 10.1073/Pnas.1703752114  0.38
2017 Li H, Peng T, Wang Q, Wu Y, Chang J, Zhang M, Tang G, Li C. Development of Incompletely Fused Carpels in Maize Ovary Revealed by miRNA, Target Gene and Phytohormone Analysis. Frontiers in Plant Science. 8: 463. PMID 28421097 DOI: 10.3389/Fpls.2017.00463  0.35
2017 Yang M, Li C, Cai Z, Hu Y, Nolan T, Yu F, Yin Y, Xie Q, Tang G, Wang X. SINAT E3 Ligases Control the Light-Mediated Stability of the Brassinosteroid-Activated Transcription Factor BES1 in Arabidopsis. Developmental Cell. 41: 47-58.e4. PMID 28399399 DOI: 10.1016/J.Devcel.2017.03.014  0.455
2017 Li W, Wang Y, Zhu J, Wang Z, Tang G, Huang B. Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entomopathogenic fungus Metarhizium robertsii. Fungal Biology. 121: 293-303. PMID 28215355 DOI: 10.1016/J.Funbio.2017.01.002  0.313
2016 Yan J, Zhao C, Zhou J, Yang Y, Wang P, Zhu X, Tang G, Bressan RA, Zhu JK. The miR165/166 Mediated Regulatory Module Plays Critical Roles in ABA Homeostasis and Response in Arabidopsis thaliana. Plos Genetics. 12: e1006416. PMID 27812104 DOI: 10.1371/Journal.Pgen.1006416  0.56
2016 Shi L, Tang X, Tang G. GUIDE-Seq to Detect Genome-wide Double-Stranded Breaks in Plants. Trends in Plant Science. PMID 27593568 DOI: 10.1016/J.Tplants.2016.08.005  0.399
2016 Wu X, Ding D, Shi C, Xue Y, Zhang Z, Tang G, Tang J. microRNA-dependent gene regulatory networks in maize leaf senescence. Bmc Plant Biology. 16: 73. PMID 27000050 DOI: 10.1186/S12870-016-0755-Y  0.445
2016 Chi M, Bhagwat B, Tang G, Xiang Y. Knockdown of Polyphenol Oxidase Gene Expression in Potato (Solanum tuberosum L.) with Artificial MicroRNAs. Methods in Molecular Biology (Clifton, N.J.). 1405: 163-78. PMID 26843174 DOI: 10.1007/978-1-4939-3393-8_15  0.4
2016 Bhagwat B, Chi M, Han D, Tang H, Tang G, Xiang Y. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System. Methods in Molecular Biology (Clifton, N.J.). 1405: 149-62. PMID 26843173 DOI: 10.1007/978-1-4939-3393-8_14  0.469
2016 Teotia S, Singh D, Tang X, Tang G. Essential RNA-Based Technologies and Their Applications in Plant Functional Genomics. Trends in Biotechnology. PMID 26774589 DOI: 10.1016/J.Tibtech.2015.12.001  0.414
2016 Chen Y, Zhao D, Wang Z, Wang Z, Tang G, Huang L. Plant Electrical Signal Classification Based on Waveform Similarity Algorithms. 9: 70. DOI: 10.3390/A9040070  0.447
2015 Teotia S, Tang G. To bloom or not to bloom: role of microRNAs in plant flowering. Molecular Plant. 8: 359-77. PMID 25737467 DOI: 10.1016/J.Molp.2014.12.018  0.463
2015 Jia X, Ding N, Fan W, Yan J, Gu Y, Tang X, Li R, Tang G. Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic. Plant Science : An International Journal of Experimental Plant Biology. 233: 11-21. PMID 25711809 DOI: 10.1016/J.Plantsci.2014.12.020  0.429
2014 Peng T, Sun H, Qiao M, Zhao Y, Du Y, Zhang J, Li J, Tang G, Zhao Q. Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in rice. Bmc Plant Biology. 14: 196. PMID 25052585 DOI: 10.1186/S12870-014-0196-4  0.407
2014 Wong J, Gao L, Yang Y, Zhai J, Arikit S, Yu Y, Duan S, Chan V, Xiong Q, Yan J, Li S, Liu R, Wang Y, Tang G, Meyers BC, et al. Roles of small RNAs in soybean defense against Phytophthora sojae infection. The Plant Journal : For Cell and Molecular Biology. 79: 928-40. PMID 24944042 DOI: 10.1111/Tpj.12590  0.386
2014 Cai Z, Liu J, Wang H, Yang C, Chen Y, Li Y, Pan S, Dong R, Tang G, Barajas-Lopez Jde D, Fujii H, Wang X. GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 111: 9651-6. PMID 24928519 DOI: 10.1073/Pnas.1316717111  0.303
2014 Chi M, Bhagwat B, Lane WD, Tang G, Su Y, Sun R, Oomah BD, Wiersma PA, Xiang Y. Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. Bmc Plant Biology. 14: 62. PMID 24618103 DOI: 10.1186/1471-2229-14-62  0.383
2013 Tang G, Tang X. Short tandem target mimic: a long journey to the engineered molecular landmine for selective destruction/blockage of microRNAs in plants and animals. Journal of Genetics and Genomics = Yi Chuan Xue Bao. 40: 291-6. PMID 23790628 DOI: 10.1016/J.Jgg.2013.02.004  0.525
2013 Bhagwat B, Chi M, Su L, Tang H, Tang G, Xiang Y. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation. Journal of Genetics and Genomics = Yi Chuan Xue Bao. 40: 261-70. PMID 23706301 DOI: 10.1016/J.Jgg.2013.03.012  0.487
2013 Han D, Tang G, Zhang J. A parallel strategy for predicting the secondary structure of polycistronic microRNAs. International Journal of Bioinformatics Research and Applications. 9: 134-55. PMID 23467060 DOI: 10.1504/Ijbra.2013.052446  0.343
2012 Lewis RW, Tang G, McNear DH. Morphological and genetic changes induced by excess Zn in roots of Medicago truncatula A17 and a Zn accumulating mutant. Bmc Research Notes. 5: 657. PMID 23191938 DOI: 10.1186/1756-0500-5-657  0.496
2012 Tang G, Yan J, Gu Y, Qiao M, Fan R, Mao Y, Tang X. Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods (San Diego, Calif.). 58: 118-25. PMID 23098881 DOI: 10.1016/J.Ymeth.2012.10.006  0.465
2012 Iyer NJ, Jia X, Sunkar R, Tang G, Mahalingam R. microRNAs responsive to ozone-induced oxidative stress in Arabidopsis thaliana. Plant Signaling & Behavior. 7: 484-91. PMID 22499183 DOI: 10.4161/Psb.19337  0.415
2012 Ren L, Tang G. Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana. Plant Science : An International Journal of Experimental Plant Biology. 187: 59-68. PMID 22404833 DOI: 10.1016/J.Plantsci.2012.01.014  0.314
2012 Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. The Plant Cell. 24: 415-27. PMID 22345490 DOI: 10.1105/Tpc.111.094144  0.325
2011 Ji L, Liu X, Yan J, Wang W, Yumul RE, Kim YJ, Dinh TT, Liu J, Cui X, Zheng B, Agarwal M, Liu C, Cao X, Tang G, Chen X. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. Plos Genetics. 7: e1001358. PMID 21483759 DOI: 10.1371/Journal.Pgen.1001358  0.342
2011 Tang X, Tang X, Gal J, Kyprianou N, Zhu H, Tang G. Detection of microRNAs in prostate cancer cells by microRNA array. Methods in Molecular Biology (Clifton, N.J.). 732: 69-88. PMID 21431706 DOI: 10.1007/978-1-61779-083-6_6  0.302
2011 Jia X, Yan J, Tang G. MicroRNA-mediated DNA methylation in plants Frontiers in Biology. 6: 133-139. DOI: 10.1007/S11515-011-1136-4  0.415
2010 Tang G. Plant microRNAs: An insight into their gene structures and evolution Seminars in Cell and Developmental Biology. 21: 782-789. PMID 20691276 DOI: 10.1016/J.Semcdb.2010.07.009  0.417
2010 Jia X, Mendu V, Tang G. An array platform for identification of stress-responsive microRNAs in plants. Methods in Molecular Biology (Clifton, N.J.). 639: 253-69. PMID 20387051 DOI: 10.1007/978-1-60761-702-0_15  0.409
2010 Gu M, Xu K, Chen A, Zhu Y, Tang G, Xu G. Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiologia Plantarum. 138: 226-37. PMID 20015123 DOI: 10.1111/J.1399-3054.2009.01320.X  0.329
2009 Jia X, Ren L, Chen QJ, Li R, Tang G. UV-B-responsive microRNAs in Populus tremula. Journal of Plant Physiology. 166: 2046-57. PMID 19628301 DOI: 10.1016/J.Jplph.2009.06.011  0.366
2009 Jia X, Wang WX, Ren L, Chen QJ, Mendu V, Willcut B, Dinkins R, Tang X, Tang G. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Molecular Biology. 71: 51-9. PMID 19533381 DOI: 10.1007/S11103-009-9508-8  0.421
2009 Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. Rna (New York, N.Y.). 15: 287-93. PMID 19096044 DOI: 10.1261/Rna.1211209  0.313
2008 Tang G, Tang X, Mendu V, Tang X, Jia X, Chen QJ, He L. The art of microRNA: various strategies leading to gene silencing via an ancient pathway. Biochimica Et Biophysica Acta. 1779: 655-62. PMID 18620087 DOI: 10.1016/J.Bbagrm.2008.06.006  0.434
2008 Nelson PT, Wang WX, Wilfred BR, Tang G. Technical variables in high-throughput miRNA expression profiling: much work remains to be done. Biochimica Et Biophysica Acta. 1779: 758-65. PMID 18439437 DOI: 10.1016/J.Bbagrm.2008.03.012  0.363
2008 Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 28: 1213-23. PMID 18234899 DOI: 10.1523/Jneurosci.5065-07.2008  0.328
2007 Tang X, Gal J, Zhuang X, Wang W, Zhu H, Tang G. A simple array platform for microRNA analysis and its application in mouse tissues. Rna (New York, N.Y.). 13: 1803-22. PMID 17675362 DOI: 10.1261/Rna.498607  0.316
2007 Tang G, Galili G, Zhuang X. RNAi and microRNA: breakthrough technologies for the improvement of plant nutritional value and metabolic engineering Metabolomics. 3: 357-369. DOI: 10.1007/S11306-007-0073-3  0.65
2005 Tang G. siRNA and miRNA: An insight into RISCs Trends in Biochemical Sciences. 30: 106-114. PMID 15691656 DOI: 10.1016/J.Tibs.2004.12.007  0.33
2005 Stepansky A, Yao Y, Tang G, Galili G. Regulation of lysine catabolism in Arabidopsis through concertedly regulated synthesis of the two distinct gene products of the composite AtLKR/SDH locus. Journal of Experimental Botany. 56: 525-36. PMID 15569707 DOI: 10.1093/Jxb/Eri031  0.793
2004 Tang G, Galili G. Using RNAi to improve plant nutritional value: from mechanism to application. Trends in Biotechnology. 22: 463-9. PMID 15331227 DOI: 10.1016/J.Tibtech.2004.07.009  0.674
2004 Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. The Embo Journal. 23: 3356-64. PMID 15282547 DOI: 10.1038/Sj.Emboj.7600340  0.357
2004 Tang G, Zamore PD. Biochemical dissection of RNA silencing in plants. Methods in Molecular Biology (Clifton, N.J.). 257: 223-44. PMID 14770009 DOI: 10.1385/1-59259-750-5:223  0.373
2003 Tang G, Reinhart BJ, Bartel DP, Zamore PD. A biochemical framework for RNA silencing in plants. Genes & Development. 17: 49-63. PMID 12514099 DOI: 10.1101/Gad.1048103  0.419
2002 Zhu X, Tang G, Galili G. The activity of the Arabidopsis bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase enzyme of lysine catabolism is regulated by functional interaction between its two enzyme domains. The Journal of Biological Chemistry. 277: 49655-61. PMID 12393892 DOI: 10.1074/Jbc.M205466200  0.756
2002 Tang G, Zhu X, Gakiere B, Levanony H, Kahana A, Galili G. The bifunctional LKR/SDH locus of plants also encodes a highly active monofunctional lysine-ketoglutarate reductase using a polyadenylation signal located within an intron. Plant Physiology. 130: 147-54. PMID 12226495 DOI: 10.1104/Pp.005660  0.763
2001 Zhu X, Tang G, Granier F, Bouchez D, Galili G. A T-DNA insertion knockout of the bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase gene elevates lysine levels in Arabidopsis seeds. Plant Physiology. 126: 1539-45. PMID 11500552 DOI: 10.1104/Pp.126.4.1539  0.775
2001 Galili G, Tang G, Zhu X, Gakiere B. Lysine catabolism: a stress and development super-regulated metabolic pathway. Current Opinion in Plant Biology. 4: 261-6. PMID 11312138 DOI: 10.1016/S1369-5266(00)00170-9  0.795
2001 Zhu X, Tang G, Galili G. Characterization of the two saccharopine dehydrogenase isozymes of lysine catabolism encoded by the single composite AtLKR/SDH locus of Arabidopsis. Plant Physiology. 124: 1363-72. PMID 11080311 DOI: 10.1104/Pp.124.3.1363  0.708
2001 Zhu X, Tang G, Galili G. The catabolic function of the alpha-aminoadipic acid pathway in plants is associated with unidirectional activity of lysine-oxoglutarate reductase, but not saccharopine dehydrogenase. The Biochemical Journal. 351: 215-20. PMID 10998364 DOI: 10.1042/0264-6021:3510215  0.785
2001 Galili G, Tang G, Zhu X, Karchi H, Miron D, Gakière B, Stepansky A. Molecular genetic dissection and potential manipulation of lysine metabolism in seeds Journal of Plant Physiology. 158: 515-520. DOI: 10.1078/0176-1617-00364  0.729
2000 Tang G, Zhu X, Tang X, Galili G. A novel composite locus of Arabidopsis encoding two polypeptides with metabolically related but distinct functions in lysine catabolism. The Plant Journal : For Cell and Molecular Biology. 23: 195-203. PMID 10929113 DOI: 10.1046/J.1365-313X.2000.00770.X  0.777
2000 GALILI G, TANG G, ZHU X, AMIR R, LEVANONY H, SHY G, HERMAN EM. PLANT SEEDS: AN EXCITING MODEL SYSTEM FOR DISSECTING MOLECULAR AND CELLULAR REGULATION OF METABOLIC PROCESSES Israel Journal of Plant Sciences. 48: 181-187. DOI: 10.1560/EEEP-KB7G-GGQH-5V0R  0.788
2000 ZHU X, TANG G, GALILI G. The catabolic function of the α-aminoadipic acid pathway in plants is associated with unidirectional activity of lysine–oxoglutarate reductase, but not saccharopine dehydrogenase Biochemical Journal. 351: 215-220. DOI: 10.1042/bj3510215  0.777
1997 Tang G, Miron D, Zhu-Shimoni JX, Galili G. Regulation of lysine catabolism through lysine-ketoglutarate reductase and saccharopine dehydrogenase in arabidopsis Plant Cell. 9: 1305-1316. PMID 9286108 DOI: 10.1105/Tpc.9.8.1305  0.765
1997 Tang G, Zhu-Shimoni JX, Amir R, Zchori IB, Galili G. Cloning and expression of an Arabidopsis thaliana cDNA encoding a monofunctional aspartate kinase homologous to the lysine-sensitive enzyme of Escherichia coli. Plant Molecular Biology. 34: 287-93. PMID 9207844 DOI: 10.1023/A:1005849228945  0.768
Show low-probability matches.