Yu Wang - Publications

Affiliations: 
2010-2013 Wuhan University of Technology 

30 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Dai W, Yan F, Xu L, Zhou M, Wang Y. Effects of carbon monoxide addition on the sooting characteristics of ethylene and propane counterflow diffusion flames Fuel. 271: 117674. DOI: 10.1016/J.Fuel.2020.117674  0.457
2020 Wang W, Xu L, Yan J, Wang Y. Temperature dependence of the fuel mixing effect on soot precursor formation in ethylene-based diffusion flames Fuel. 267: 117121. DOI: 10.1016/J.Fuel.2020.117121  0.41
2020 Sun B, Kang X, Wang Y. Numerical investigations on the methane-oxygen diffusion flame-street phenomena in a microchannel: Effects of wall temperatures, inflow rates and global equivalence ratios on flame behaviors and combustion performances Energy. 207: 118194. DOI: 10.1016/J.Energy.2020.118194  0.387
2020 Li Z, Liu P, Zhang P, Wang Y, He H, Chung SH, Roberts WL. Role of dimethyl ether in incipient soot formation in premixed ethylene flames Combustion and Flame. 216: 271-279. DOI: 10.1016/J.Combustflame.2020.03.004  0.559
2020 Xu L, Yan F, Dai W, Zhou M, Chung SH, Wang Y. Synergistic effects on soot formation in counterflow diffusion flames of acetylene-based binary mixture fuels Combustion and Flame. 216: 24-28. DOI: 10.1016/J.Combustflame.2020.02.013  0.578
2020 Xu L, Yan F, Wang Y, Chung SH. Chemical effects of hydrogen addition on soot formation in counterflow diffusion flames: Dependence on fuel type and oxidizer composition Combustion and Flame. 213: 14-25. DOI: 10.1016/J.Combustflame.2019.11.011  0.585
2019 Mahmoud NM, Yan F, Zhou M, Xu L, Wang Y. Coupled Effects of Carbon Dioxide and Water Vapor Addition on Soot Formation in Ethylene Diffusion Flames Energy & Fuels. 33: 5582-5596. DOI: 10.1021/Acs.Energyfuels.9B00192  0.395
2019 Wang Y, Chung SH. Soot formation in laminar counterflow flames Progress in Energy and Combustion Science. 74: 152-238. DOI: 10.1016/J.Pecs.2019.05.003  0.593
2019 Mahmoud NM, Yan F, Wang Y. Effects of fuel inlet boundary condition on aromatic species formation in coflow diffusion flames Journal of the Energy Institute. 92: 288-297. DOI: 10.1016/J.Joei.2018.01.007  0.402
2019 Yan F, Zhou M, Xu L, Wang Y, Chung SH. An experimental study on the spectral dependence of light extinction in sooting ethylene counterflow diffusion flames Experimental Thermal and Fluid Science. 100: 259-270. DOI: 10.1016/J.Expthermflusci.2018.09.008  0.538
2019 Kang X, Sun B, Wang J, Wang Y. A numerical investigation on the thermo-chemical structures of methane-oxygen diffusion flame-streets in a microchannel Combustion and Flame. 206: 266-281. DOI: 10.1016/J.Combustflame.2019.05.006  0.419
2019 Yan F, Xu L, Wang Y, Park S, Sarathy SM, Chung SH. On the opposing effects of methanol and ethanol addition on PAH and soot formation in ethylene counterflow diffusion flames Combustion and Flame. 202: 228-242. DOI: 10.1016/J.Combustflame.2019.01.020  0.583
2018 Xu L, Yan F, Wang Y. Effects of Hydrogen Addition on the Standoff Distance of Premixed Burner-Stabilized Flames of Various Hydrocarbon Fuels Energy & Fuels. 32: 2385-2396. DOI: 10.1021/Acs.Energyfuels.7B03089  0.411
2018 Yan F, Xu L, Wang Y. Application of hydrogen enriched natural gas in spark ignition IC engines: from fundamental fuel properties to engine performances and emissions Renewable & Sustainable Energy Reviews. 82: 1457-1488. DOI: 10.1016/J.Rser.2017.05.227  0.342
2018 Li Z, Amin HMF, Liu P, Wang Y, Chung SH, Roberts WL. Effect of dimethyl ether (DME) addition on sooting limits in counterflow diffusion flames of ethylene at elevated pressures Combustion and Flame. 197: 463-470. DOI: 10.1016/J.Combustflame.2018.09.003  0.42
2018 Xu L, Yan F, Zhou M, Wang Y, Chung SH. Experimental and soot modeling studies of ethylene counterflow diffusion flames: Non-monotonic influence of the oxidizer composition on soot formation Combustion and Flame. 197: 304-318. DOI: 10.1016/J.Combustflame.2018.08.011  0.6
2018 Wang Y, Park S, Sarathy SM, Chung SH. A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames Combustion and Flame. 192: 71-85. DOI: 10.1016/J.Combustflame.2018.01.033  0.505
2017 Park S, Wang Y, Chung SH, Sarathy SM. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels Combustion and Flame. 178: 46-60. DOI: 10.1016/J.Combustflame.2017.01.001  0.594
2016 Wang Y, Chung SH. Formation of Soot in Counterflow Diffusion Flames with Carbon Dioxide Dilution Combustion Science and Technology. 188: 805-817. DOI: 10.1080/00102202.2016.1139388  0.552
2016 Wang Y, Chung SH. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames Combustion and Flame. 165: 433-444. DOI: 10.1016/J.Combustflame.2015.12.028  0.544
2016 Selvaraj P, Arias PG, Lee BJ, Im HG, Wang Y, Gao Y, Park S, Sarathy SM, Lu T, Chung SH. A computational study of ethylene-air sooting flames: Effects of large polycyclic aromatic hydrocarbons Combustion and Flame. 163: 427-436. DOI: 10.1016/J.Combustflame.2015.10.017  0.591
2015 Wang Y, Raj A, Chung SH. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels Combustion and Flame. 162: 586-596. DOI: 10.1016/J.Combustflame.2014.08.016  0.604
2014 Wang Y, Chung SH. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index Combustion and Flame. 161: 1224-1234. DOI: 10.1016/J.Combustflame.2013.10.031  0.575
2013 Wang Y, Raj AD, Chung S. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames Combustion and Flame. 160: 1667-1676. DOI: 10.1016/J.Combustflame.2013.03.013  0.603
2008 Ma F, Ding S, Wang Y, Wang Y, Wang J, Zhao S. Study on combustion behaviors and cycle-by-cycle variations in a turbocharged lean burn natural gas S.I. engine with hydrogen enrichment International Journal of Hydrogen Energy. 33: 7245-7255. DOI: 10.1016/J.Ijhydene.2008.09.016  0.361
2008 Ma F, Wang Y, Wang M, Liu H, Wang J, Ding S, Zhao S. Development and validation of a quasi-dimensional combustion model for SI engines fuelled by HCNG with variable hydrogen fractions International Journal of Hydrogen Energy. 33: 4863-4875. DOI: 10.1016/J.Ijhydene.2008.06.068  0.379
2008 Ma F, Wang Y. Study on the extension of lean operation limit through hydrogen enrichment in a natural gas spark-ignition engine International Journal of Hydrogen Energy. 33: 1416-1424. DOI: 10.1016/J.Ijhydene.2007.12.040  0.303
2008 Ma F, Wang Y, Liu H, Li Y, Wang J, Ding S. Effects of hydrogen addition on cycle-by-cycle variations in a lean burn natural gas spark-ignition engine International Journal of Hydrogen Energy. 33: 823-831. DOI: 10.1016/J.Ijhydene.2007.10.043  0.365
2008 Ma F, Liu H, Wang Y, Li Y, Wang J, Zhao S. Combustion and emission characteristics of a port-injection HCNG engine under various ignition timings International Journal of Hydrogen Energy. 33: 816-822. DOI: 10.1016/J.Ijhydene.2007.09.047  0.357
2007 Ma F, Wang Y, Liu H, Li Y, Wang J, Zhao S. Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine International Journal of Hydrogen Energy. 32: 5067-5075. DOI: 10.1016/J.Ijhydene.2007.07.048  0.345
Show low-probability matches.