Node connection strength in Evolution Tree.
Each node in Evolution Tree can be characterized by its mean distance from every other
node. Below is a histogram of mean distances for every node in the tree.
The final bin includes nodes that are not connected to the main tree.
Note also that only individuals whose primary affiliation is this tree are included. Nodes cross-listed
from other academic trees are included on their primary tree.
Mean inter-node distance | |||||||||||
751- |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
601- | |||||||||||
451- | |||||||||||
300- | |||||||||||
150- | |||||||||||
| |||||||||||
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19+ | |
Mean distance | |||||||||||
![]() | |||||||||||
20 most tightly coupled nodes.
Below are the Evolution Tree nodes with shortest mean distance.
Rank | Mean dist | Name | Institution | Area | Date | |
1 | 8.81 | David Wake (Info) | University of California, Berkeley | Evolution of neotropical salamanders | 2010-08-27 | |
2 | 8.93 | Allan C. Wilson (Info) | University of California, Berkeley | Molecular Evolution | 2010-08-27 | |
3 | 8.99 | Janis Antonovics (Info) | University of Virginia | evolutionary genetics and genomics, infectious disease | 2010-08-27 | |
4 | 9.03 | Fredric Janzen (Info) | Iowa State University | 2010-08-20 | ||
5 | 9.05 | Daniel L. Hartl (Info) | Harvard University | evolutionary biology, molecular genetics | 2010-08-18 | |
6 | 9.14 | Priscilla Tucker (Info) | 2012-08-26 | |||
7 | 9.22 | James F. Crow (Info) | University of Wisconsin, Madison | Evolutionary Genetics | 2010-08-27 | |
8 | 9.23 | Allan Larson (Info) | Washington University, Saint Louis | phylogenetic systematics, salamander evolution | 2010-08-27 | |
9 | 9.39 | Jonathan Losos (Info) | Harvard University | 2010-08-27 | ||
10 | 9.39 | Montgomery Slatkin (Info) | University of California, Berkeley | population genetics | 2010-08-27 | |
11 | 9.44 | Meredith J. Mahoney (Info) | Illinois State University | Herpetology, systematics | 2011-06-07 | |
12 | 9.44 | Anna Graybeal (Info) | Field Museum | Herpetology, systematics | 2011-06-07 | |
13 | 9.47 | Chih-Horng Kuo (Info) | Academia Sinica, Taiwan | molecular evolution, genome evolution, bacteria genomics | 2010-08-20 | |
14 | 9.52 | Leonie C. Moyle (Info) | Indiana University, Bloomington | Evolution | 2011-05-12 | |
15 | 9.54 | Norman C. Ellstrand (Info) | University of California, Riverside | Applied plant population genetics | 2010-08-25 | |
16 | 9.56 | Keith A. Crandall (Info) | George Washington University | Population genetics, evolutionary biology, bioinformatics, crustacean systematics | 2010-08-27 | |
17 | 9.57 | Robert D. Bradley (Info) | Texas Tech University | Mammalogy, systematics | 2011-06-07 | |
18 | 9.6 | Todd Jackman (Info) | Villanova University | Systematics, herpetology | 2014-02-22 | |
19 | 9.6 | Dolph Schluter (Info) | University of British Columbia, Vancouver | Speciation, Adaptation | 2010-08-27 | |
20 | 9.61 | Travis Ingram (Info) | University of Otago | adaptive radiation, food web ecology | 2011-02-23 |
Distribution of individual connectivity.
Another way to look at the Evolution Tree graph is to plot a histogram of
researchers (nodes) based according to the number of immediate connections
(edges) they have to other researchers. The final bin includes nodes with
16 or more connections. The actual distribution has a very long tail, with a maximum of 76 connections. Thanks to Adam Snyder for suggesting this analysis!
Edge vs node distribution | ||||||||||||||||
9385- |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
7508- | ||||||||||||||||
5631- | ||||||||||||||||
3754- | ||||||||||||||||
1877- | ||||||||||||||||
| ||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16+ | |
Number of connections | ||||||||||||||||
![]() | ||||||||||||||||