Year |
Citation |
Score |
2024 |
Cashen BA, Naufer MN, Morse M, McCauley MJ, Rouzina I, Jones CE, Furano AV, Williams MC. L1-ORF1p nucleoprotein can rapidly assume distinct conformations and simultaneously bind more than one nucleic acid. Nucleic Acids Research. PMID 39565204 DOI: 10.1093/nar/gkae1141 |
0.375 |
|
2023 |
Mizgier NA, Jones CE, Furano AV. Co-expression of distinct L1 retrotransposon coiled coils can lead to their entanglement. Mobile Dna. 14: 16. PMID 37864180 DOI: 10.1186/s13100-023-00303-8 |
0.387 |
|
2022 |
Cashen BA, Naufer MN, Morse M, Jones CE, Williams MC, Furano AV. The L1-ORF1p coiled coil enables formation of a tightly compacted nucleic acid-bound complex that is associated with retrotransposition. Nucleic Acids Research. PMID 35871298 DOI: 10.1093/nar/gkac628 |
0.303 |
|
2020 |
Furano AV, Jones CE, Periwal V, Callahan KE, Walser JC, Cook PR. Cryptic genetic variation enhances primate L1 retrotransposon survival by enlarging the functional coiled coil sequence space of ORF1p. Plos Genetics. 16: e1008991. PMID 32797042 DOI: 10.1371/Journal.Pgen.1008991 |
0.444 |
|
2020 |
Shen B, Chapman JH, Custance MF, Tricola GM, Jones CE, Furano AV. Perturbation of base excision repair sensitizes breast cancer cells to APOBEC3 deaminase-mediated mutations. Elife. 9. PMID 31904337 DOI: 10.7554/Elife.51605 |
0.307 |
|
2018 |
Naufer MN, Furano AV, Williams MC. Protein-Nucleic Acid Interactions of LINE-1 ORF1p. Seminars in Cell & Developmental Biology. PMID 29596909 DOI: 10.1016/J.Semcdb.2018.03.019 |
0.407 |
|
2016 |
Furano AV, Cook PR. The challenge of ORF1p phosphorylation: Effects on L1 activity and its host. Mobile Genetic Elements. 6: e1119927. PMID 27066302 DOI: 10.1080/2159256X.2015.1119927 |
0.393 |
|
2015 |
Naufer MN, Callahan KE, Cook PR, Perez-Gonzalez CE, Williams MC, Furano AV. L1 retrotransposition requires rapid ORF1p oligomerization, a novel coiled coil-dependent property conserved despite extensive remodeling. Nucleic Acids Research. PMID 26673717 DOI: 10.1093/Nar/Gkv1342 |
0.648 |
|
2015 |
Chen J, Furano AV. Breaking bad: The mutagenic effect of DNA repair. Dna Repair. PMID 26073774 DOI: 10.1016/J.Dnarep.2015.04.012 |
0.363 |
|
2015 |
Cook PR, Jones CE, Furano AV. Phosphorylation of ORF1p is required for L1 retrotransposition. Proceedings of the National Academy of Sciences of the United States of America. 112: 4298-303. PMID 25831499 DOI: 10.1073/Pnas.1416869112 |
0.398 |
|
2015 |
Naufer MN, Furano AV, Williams MC. Oligomerization Kinetics of ORF1p is Correlated with Line1 Retrotransposition Biophysical Journal. 108: 7-8. DOI: 10.1016/J.Bpj.2014.11.1131 |
0.439 |
|
2014 |
Chen J, Miller BF, Furano AV. Repair of naturally occurring mismatches can induce mutations in flanking DNA. Elife. 3: e02001. PMID 24843013 DOI: 10.7554/Elife.02001 |
0.349 |
|
2014 |
Chen J, Miller BF, Furano AV. Author response: Repair of naturally occurring mismatches can induce mutations in flanking DNA Elife. DOI: 10.7554/Elife.02001.034 |
0.326 |
|
2014 |
Naufer MN, Furano AV, Williams MC. Human ORF1p - DNA Interactions Characterized by Single Molecule DNA Stretching Biophysical Journal. 106: 73a. DOI: 10.1016/J.Bpj.2013.11.481 |
0.423 |
|
2012 |
Callahan KE, Hickman AB, Jones CE, Ghirlando R, Furano AV. Polymerization and nucleic acid-binding properties of human L1 ORF1 protein. Nucleic Acids Research. 40: 813-27. PMID 21937507 DOI: 10.1093/Nar/Gkr728 |
0.429 |
|
2008 |
Walser JC, Ponger L, Furano AV. CpG dinucleotides and the mutation rate of non-CpG DNA. Genome Research. 18: 1403-14. PMID 18550801 DOI: 10.1101/Gr.076455.108 |
0.386 |
|
2006 |
Witherspoon DJ, Marchani EE, Watkins WS, Ostler CT, Wooding SP, Anders BA, Fowlkes JD, Boissinot S, Furano AV, Ray DA, Rogers AR, Batzer MA, Jorde LB. Human population genetic structure and diversity inferred from polymorphic L1(LINE-1) and Alu insertions. Human Heredity. 62: 30-46. PMID 17003565 DOI: 10.1159/000095851 |
0.37 |
|
2006 |
Boissinot S, Davis J, Entezam A, Petrov D, Furano AV. Fitness cost of LINE-1 (L1) activity in humans. Proceedings of the National Academy of Sciences of the United States of America. 103: 9590-4. PMID 16766655 DOI: 10.1073/Pnas.0603334103 |
0.453 |
|
2005 |
Boissinot S, Furano AV. The recent evolution of human L1 retrotransposons. Cytogenetic and Genome Research. 110: 402-6. PMID 16093692 DOI: 10.1159/000084972 |
0.45 |
|
2005 |
Martin SL, Li WL, Furano AV, Boissinot S. The structures of mouse and human L1 elements reflect their insertion mechanism. Cytogenetic and Genome Research. 110: 223-8. PMID 16093676 DOI: 10.1159/000084956 |
0.453 |
|
2004 |
Boissinot S, Entezam A, Young L, Munson PJ, Furano AV. The insertional history of an active family of L1 retrotransposons in humans. Genome Research. 14: 1221-31. PMID 15197167 DOI: 10.1101/Gr.2326704 |
0.414 |
|
2004 |
Boissinot S, Roos C, Furano AV. Different rates of LINE-1 (L1) retrotransposon amplification and evolution in New World monkeys. Journal of Molecular Evolution. 58: 122-30. PMID 14743320 DOI: 10.1007/S00239-003-2539-X |
0.404 |
|
2004 |
Furano AV, Duvernell DD, Boissinot S. L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends in Genetics : Tig. 20: 9-14. PMID 14698614 DOI: 10.1016/J.Tig.2003.11.006 |
0.463 |
|
2002 |
Eickbush TH, Furano AV. Fruit flies and humans respond differently to retrotransposons. Current Opinion in Genetics & Development. 12: 669-74. PMID 12433580 DOI: 10.1016/S0959-437X(02)00359-3 |
0.655 |
|
2001 |
Boissinot S, Furano AV. Adaptive evolution in LINE-1 retrotransposons. Molecular Biology and Evolution. 18: 2186-94. PMID 11719568 DOI: 10.1093/Oxfordjournals.Molbev.A003765 |
0.412 |
|
2001 |
Boissinot S, Entezam A, Furano AV. Selection against deleterious LINE-1-containing loci in the human lineage. Molecular Biology and Evolution. 18: 926-35. PMID 11371580 DOI: 10.1093/Oxfordjournals.Molbev.A003893 |
0.417 |
|
2000 |
Boissinot S, Chevret P, Furano AV. L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Molecular Biology and Evolution. 17: 915-28. PMID 10833198 DOI: 10.1093/Oxfordjournals.Molbev.A026372 |
0.469 |
|
2000 |
Furano AV. The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Progress in Nucleic Acid Research and Molecular Biology. 64: 255-94. PMID 10697412 DOI: 10.1016/S0079-6603(00)64007-2 |
0.446 |
|
1998 |
Verneau O, Catzeflis F, Furano AV. Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons. Proceedings of the National Academy of Sciences of the United States of America. 95: 11284-9. PMID 9736728 DOI: 10.1073/Pnas.95.19.11284 |
0.424 |
|
1997 |
Verneau O, Catzeflis F, Furano AV. Determination of the evolutionary relationships in Rattus sensu lato (Rodentia : Muridae) using L1 (LINE-1) amplification events. Journal of Molecular Evolution. 45: 424-36. PMID 9321421 DOI: 10.1007/Pl00006247 |
0.429 |
|
1997 |
Cabot EL, Angeletti B, Usdin K, Furano AV. Rapid evolution of a young L1 (LINE-1) clade in recently speciated Rattus taxa. Journal of Molecular Evolution. 45: 412-23. PMID 9321420 DOI: 10.1007/Pl00006246 |
0.322 |
|
1997 |
Hayward BE, Zavanelli M, Furano AV. Recombination creates novel L1 (LINE-1) elements in Rattus norvegicus. Genetics. 146: 641-54. PMID 9178013 |
0.348 |
|
1995 |
Usdin K, Chevret P, Catzeflis FM, Verona R, Furano AV. L1 (LINE-1) retrotransposable elements provide a "fossil" record of the phylogenetic history of murid rodents. Molecular Biology and Evolution. 12: 73-82. PMID 7877498 DOI: 10.1093/Oxfordjournals.Molbev.A040192 |
0.446 |
|
1995 |
Furano AV, Usdin K. DNA "fossils" and phylogenetic analysis. Using L1 (LINE-1, long interspersed repeated) DNA to determine the evolutionary history of mammals. The Journal of Biological Chemistry. 270: 25301-4. PMID 7592685 DOI: 10.1074/Jbc.270.43.25301 |
0.424 |
|
1994 |
Furano AV, Hayward BE, Chevret P, Catzeflis F, Usdin K. Amplification of the ancient murine Lx family of long interspersed repeated DNA occurred during the murine radiation. Journal of Molecular Evolution. 38: 18-27. PMID 8151711 DOI: 10.1007/Bf00175491 |
0.41 |
|
1993 |
Pascale E, Liu C, Valle E, Usdin K, Furano AV. The evolution of long interspersed repeated DNA (L1, LINE 1) as revealed by the analysis of an ancient rodent L1 DNA family. Journal of Molecular Evolution. 36: 9-20. PMID 8433380 DOI: 10.1007/Bf02407302 |
0.44 |
|
1990 |
Pascale E, Valle E, Furano AV. Amplification of an ancestral mammalian L1 family of long interspersed repeated DNA occurred just before the murine radiation. Proceedings of the National Academy of Sciences of the United States of America. 87: 9481-5. PMID 2251288 DOI: 10.1073/Pnas.87.23.9481 |
0.43 |
|
1988 |
Furano AV, Robb SM, Robb FT. The structure of the regulatory region of the rat L1 (L1Rn, long interspersed repeated) DNA family of transposable elements. Nucleic Acids Research. 16: 9215-31. PMID 2845369 DOI: 10.1093/Nar/16.19.9215 |
0.418 |
|
1988 |
Usdin K, Furano AV. Rat L (long interspersed repeated DNA) elements contain guanine-rich homopurine sequences that induce unpairing of contiguous duplex DNA. Proceedings of the National Academy of Sciences of the United States of America. 85: 4416-20. PMID 2837766 DOI: 10.1073/Pnas.85.12.4416 |
0.453 |
|
1988 |
Nur I, Pascale E, Furano AV. The left end of rat L1 (L1Rn, long interspersed repeated) DNA which is a CpG island can function as a promoter. Nucleic Acids Research. 16: 9233-51. PMID 2459662 DOI: 10.1093/Nar/16.19.9233 |
0.427 |
|
1987 |
d'Ambrosio E, Furano AV. DNA synthesis arrest sites at the right terminus of rat long interspersed repeated (LINE or L1Rn) DNA family members. Nucleic Acids Research. 15: 3155-75. PMID 2436148 DOI: 10.1093/Nar/15.7.3155 |
0.376 |
|
1986 |
Furano AV, Somerville CC, Tsichlis PN, D'Ambrosio E. Target sites for the transposition of rat long interspersed repeated DNA elements (LINEs) are not random. Nucleic Acids Research. 14: 3717-27. PMID 3012480 DOI: 10.1093/Nar/14.9.3717 |
0.351 |
|
1985 |
Economou-Pachnis A, Lohse MA, Furano AV, Tsichlis PN. Insertion of long interspersed repeated elements at the Igh (immunoglobulin heavy chain) and Mlvi-2 (Moloney leukemia virus integration 2) loci of rats. Proceedings of the National Academy of Sciences of the United States of America. 82: 2857-61. PMID 2986141 DOI: 10.1073/Pnas.82.9.2857 |
0.334 |
|
1984 |
Epstein DA, Witney FR, Furano AV. The spread of sequence variants in Rattus satellite DNAs. Nucleic Acids Research. 12: 973-88. PMID 6320128 DOI: 10.1093/Nar/12.2.973 |
0.344 |
|
1984 |
Salemme A, Furano AV. A convenient method for locating sets of related short sequences in DNA sequences of any length. Nucleic Acids Research. 12: 257-62. PMID 6320091 DOI: 10.1093/Nar/12.1Part1.257 |
0.338 |
|
1981 |
Filer D, Dhar R, Furano AV. The conservation of DNA sequences over very long periods of evolutionary time. Evidence against intergeneric chromosomal transfer as an explanation for the presence of Escherichia coli tuf gene sequences in taxonomically-unrelated prokaryotes. European Journal of Biochemistry / Febs. 120: 69-77. PMID 6796417 DOI: 10.1111/J.1432-1033.1981.Tb05671.X |
0.366 |
|
Show low-probability matches. |