Year |
Citation |
Score |
2024 |
O'Connor-Moneley J, Fletcher J, Bean C, Parker J, Kelly SL, Moran GP, Sullivan DJ. Deletion of the Candida albicans TLO gene family results in alterations in membrane sterol composition and fluconazole tolerance. Plos One. 19: e0308665. PMID 39121069 DOI: 10.1371/journal.pone.0308665 |
0.601 |
|
2023 |
Fletcher J, O'Connor-Moneley J, Frawley D, Flanagan PR, Alaalm L, Menendez-Manjon P, Estevez SV, Hendricks S, Woodruff AL, Buscaino A, Anderson MZ, Sullivan DJ, Moran GP. Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function. Plos Genetics. 19: e1011082. PMID 38048294 DOI: 10.1371/journal.pgen.1011082 |
0.576 |
|
2023 |
O'Connor-Moneley J, Alaalm L, Moran GP, Sullivan DJ. The role of the Mediator complex in fungal pathogenesis and response to antifungal agents. Essays in Biochemistry. PMID 37013399 DOI: 10.1042/EBC20220238 |
0.602 |
|
2020 |
Hernández-Cervantes A, Znaidi S, van Wijlick L, Denega I, Basso V, Ropars J, Sertour N, Sullivan D, Moran G, Basmaciyan L, Bon F, Dalle F, Bougnoux ME, Boekhout T, Yang Y, et al. A conserved regulator controls asexual sporulation in the fungal pathogen Candida albicans. Nature Communications. 11: 6224. PMID 33277479 DOI: 10.1038/s41467-020-20010-9 |
0.574 |
|
2020 |
Amer A, Whelan A, Al-Hebshi NN, Healy CM, Moran GP. Acetaldehyde production by isolates from patients with oral leukoplakia. Journal of Oral Microbiology. 12: 1743066. PMID 32341761 DOI: 10.1080/20002297.2020.1743066 |
0.313 |
|
2019 |
Moran GP, Anderson MZ, Myers LC, Sullivan DJ. Role of Mediator in virulence and antifungal drug resistance in pathogenic fungi. Current Genetics. PMID 30637479 DOI: 10.1007/S00294-019-00932-8 |
0.653 |
|
2019 |
Fletcher J, Flanagan P, Sullivan D, Moran G. Candida albicans TLOs and fitness: phenotypic analysis of a TLO null strain of C. albicans generated via CRISPR-Cas9 mutagenesis Access Microbiology. 1. DOI: 10.1099/acmi.ac2019.po0348 |
0.581 |
|
2018 |
Westman J, Moran G, Mogavero S, Hube B, Grinstein S. Candida albicans Hyphal Expansion Causes Phagosomal Membrane Damage and Luminal Alkalinization. Mbio. 9. PMID 30206168 DOI: 10.1128/Mbio.01226-18 |
0.313 |
|
2018 |
Flanagan PR, Fletcher J, Boyle H, Sulea R, Moran GP, Sullivan DJ. Expansion of the TLO gene family enhances the virulence of Candida species. Plos One. 13: e0200852. PMID 30028853 DOI: 10.1371/Journal.Pone.0200852 |
0.687 |
|
2017 |
Amer A, Galvin S, Healy CM, Moran GP. The Microbiome of Potentially Malignant Oral Leukoplakia Exhibits Enrichment for Fusobacterium, Leptotrichia, Campylobacter, and Rothia Species. Frontiers in Microbiology. 8: 2391. PMID 29250055 DOI: 10.3389/Fmicb.2017.02391 |
0.329 |
|
2017 |
Flanagan PR, Liu NN, Fitzpatrick DJ, Hokamp K, Köhler JR, Moran GP. The Candida albicans TOR-Activating GTPases Gtr1 and Rhb1 Coregulate Starvation Responses and Biofilm Formation. Msphere. 2. PMID 29152581 DOI: 10.1128/mSphere.00477-17 |
0.351 |
|
2017 |
Liu NN, Flanagan PR, Zeng J, Jani NM, Cardenas ME, Moran GP, Köhler JR. Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition. Proceedings of the National Academy of Sciences of the United States of America. PMID 28566496 DOI: 10.1073/Pnas.1617799114 |
0.376 |
|
2017 |
Connolly E, Millhouse E, Doyle R, Culshaw S, Ramage G, Moran GP. The Porphyromonas gingivalis hemagglutinins HagB and HagC are major mediators of adhesion and biofilm formation. Molecular Oral Microbiology. 32: 35-47. PMID 28051836 DOI: 10.1111/Omi.12151 |
0.411 |
|
2017 |
Amer A, Galvin S, Healy C, Moran GP. The microbiome of oral leukoplakia shows enrichment in Fusobacteria and Rothia species Journal of Oral Microbiology. 9: 1325253. DOI: 10.1080/20002297.2017.1325253 |
0.308 |
|
2016 |
Liu Z, Moran GP, Sullivan DJ, MacCallum DM, Myers LC. Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp. Plos Genetics. 12: e1006373. PMID 27741243 DOI: 10.1371/Journal.Pgen.1006373 |
0.755 |
|
2015 |
Caplice N, Moran GP. Candida albicans exhibits enhanced alkaline and temperature induction of Efg1-regulated transcripts relative to Candida dubliniensis. Genomics Data. 6: 130-5. PMID 26697354 DOI: 10.1016/J.Gdata.2015.08.026 |
0.536 |
|
2015 |
Sullivan DJ, Berman J, Myers LC, Moran GP. Telomeric ORFS in Candida albicans: does mediator tail wag the yeast? Plos Pathogens. 11: e1004614. PMID 25675446 DOI: 10.1371/Journal.Ppat.1004614 |
0.674 |
|
2014 |
Haran J, Boyle H, Hokamp K, Yeomans T, Liu Z, Church M, Fleming AB, Anderson MZ, Berman J, Myers LC, Sullivan DJ, Moran GP. Telomeric ORFs (TLOs) in Candida spp. Encode mediator subunits that regulate distinct virulence traits. Plos Genetics. 10: e1004658. PMID 25356803 DOI: 10.1371/Journal.Pgen.1004658 |
0.672 |
|
2014 |
Jordan RP, Williams DW, Moran GP, Coleman DC, Sullivan DJ. Comparative adherence of Candida albicans and Candida dubliniensis to human buccal epithelial cells and extracellular matrix proteins. Medical Mycology. 52: 254-63. PMID 24625677 DOI: 10.1093/Mmy/Myt032 |
0.668 |
|
2014 |
Miajlovic H, Cooke NM, Moran GP, Rogers TR, Smith SG. Response of extraintestinal pathogenic Escherichia coli to human serum reveals a protective role for Rcs-regulated exopolysaccharide colanic acid. Infection and Immunity. 82: 298-305. PMID 24166954 DOI: 10.1128/Iai.00800-13 |
0.392 |
|
2012 |
Moran GP. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis. Fems Yeast Research. 12: 918-23. PMID 22888912 DOI: 10.1111/J.1567-1364.2012.00841.X |
0.441 |
|
2012 |
Higgins J, Pinjon E, Oltean HN, White TC, Kelly SL, Martel CM, Sullivan DJ, Coleman DC, Moran GP. Triclosan antagonizes fluconazole activity against Candida albicans. Journal of Dental Research. 91: 65-70. PMID 21972257 DOI: 10.1177/0022034511425046 |
0.582 |
|
2012 |
Schulz B, Knobloch M, Moran GP, Weber K, Ruhnke M. Influence of doxorubicin on fluconazole susceptibility and efflux pump gene expression of Candida dubliniensis. Medical Mycology. 50: 421-6. PMID 21939345 DOI: 10.3109/13693786.2011.608730 |
0.488 |
|
2012 |
Agwu E, Ihongbe JC, McManus BA, Moran GP, Coleman DC, Sullivan DJ. Distribution of yeast species associated with oral lesions in HIV-infected patients in Southwest Uganda. Medical Mycology. 50: 276-80. PMID 21905950 DOI: 10.3109/13693786.2011.604862 |
0.549 |
|
2012 |
Moran GP, Coleman DC, Sullivan DJ. Candida albicans versus Candida dubliniensis: Why Is C. albicans More Pathogenic? International Journal of Microbiology. 2012: 205921. PMID 21904553 DOI: 10.1155/2012/205921 |
0.708 |
|
2011 |
Martin R, Moran GP, Jacobsen ID, Heyken A, Domey J, Sullivan DJ, Kurzai O, Hube B. The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension. Plos One. 6: e18394. PMID 21512583 DOI: 10.1371/Journal.Pone.0018394 |
0.611 |
|
2011 |
McManus BA, McGovern E, Moran GP, Healy CM, Nunn J, Fleming P, Costigan C, Sullivan DJ, Coleman DC. Microbiological screening of Irish patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy reveals persistence of Candida albicans strains, gradual reduction in susceptibility to azoles, and incidences of clinical signs of oral candidiasis without culture evidence. Journal of Clinical Microbiology. 49: 1879-89. PMID 21367996 DOI: 10.1128/Jcm.00026-11 |
0.59 |
|
2011 |
Sullivan DJ, Moran GP. Differential virulence of Candida albicans and C. dubliniensis: A role for Tor1 kinase? Virulence. 2: 77-81. PMID 21289475 DOI: 10.4161/Viru.2.1.15002 |
0.663 |
|
2011 |
Moran GP, Coleman DC, Sullivan DJ. Comparative genomics and the evolution of pathogenicity in human pathogenic fungi. Eukaryotic Cell. 10: 34-42. PMID 21076011 DOI: 10.1128/Ec.00242-10 |
0.605 |
|
2011 |
Sullivan D, Moran GP, Coleman DC. Fungal Infections of Humans Fungi: Biology and Applications. 257-278. DOI: 10.1002/9781119976950.ch10 |
0.468 |
|
2010 |
O'Connor L, Caplice N, Coleman DC, Sullivan DJ, Moran GP. Differential filamentation of Candida albicans and Candida dubliniensis Is governed by nutrient regulation of UME6 expression. Eukaryotic Cell. 9: 1383-97. PMID 20639413 DOI: 10.1128/Ec.00042-10 |
0.686 |
|
2010 |
Coleman DC, Moran GP, McManus BA, Sullivan DJ. Mechanisms of antifungal drug resistance in Candida dubliniensis. Future Microbiology. 5: 935-49. PMID 20521937 DOI: 10.2217/Fmb.10.51 |
0.678 |
|
2010 |
Walsh F, Cooke NM, Smith SG, Moran GP, Cooke FJ, Ivens A, Wain J, Rogers TR. Comparison of two DNA microarrays for detection of plasmid-mediated antimicrobial resistance and virulence factor genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae. International Journal of Antimicrobial Agents. 35: 593-8. PMID 20356716 DOI: 10.1016/J.Ijantimicag.2010.02.011 |
0.383 |
|
2010 |
Fleischhacker M, Pasligh J, Moran G, Ruhnke M. Longitudinal genotyping of Candida dubliniensis isolates reveals strain maintenance, microevolution, and the emergence of itraconazole resistance. Journal of Clinical Microbiology. 48: 1643-50. PMID 20200288 DOI: 10.1128/Jcm.01522-09 |
0.405 |
|
2010 |
Spiering MJ, Moran GP, Chauvel M, Maccallum DM, Higgins J, Hokamp K, Yeomans T, d'Enfert C, Coleman DC, Sullivan DJ. Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model. Eukaryotic Cell. 9: 251-65. PMID 20023067 DOI: 10.1128/Ec.00291-09 |
0.786 |
|
2009 |
McManus BA, Sullivan DJ, Moran GP, d'Enfert C, Bougnoux ME, Nunn MA, Coleman DC. Genetic differences between avian and human isolates of Candida dubliniensis. Emerging Infectious Diseases. 15: 1467-70. PMID 19788816 DOI: 10.3201/Eid1509.081660 |
0.536 |
|
2009 |
Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, Harris D, Aslett M, Barrell JF, Butler G, Citiulo F, Coleman DC, de Groot PW, Goodwin TJ, Quail MA, McQuillan J, et al. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Research. 19: 2231-44. PMID 19745113 DOI: 10.1101/Gr.097501.109 |
0.694 |
|
2009 |
McManus BA, Moran GP, Higgins JA, Sullivan DJ, Coleman DC. A Ser29Leu substitution in the cytosine deaminase Fca1p is responsible for clade-specific flucytosine resistance in Candida dubliniensis. Antimicrobial Agents and Chemotherapy. 53: 4678-85. PMID 19704126 DOI: 10.1128/Aac.00607-09 |
0.662 |
|
2009 |
Citiulo F, Moran GP, Coleman DC, Sullivan DJ. Purification and germination of Candida albicans and Candida dubliniensis chlamydospores cultured in liquid media. Fems Yeast Research. 9: 1051-60. PMID 19538507 DOI: 10.1111/J.1567-1364.2009.00533.X |
0.576 |
|
2009 |
Enjalbert B, Moran GP, Vaughan C, Yeomans T, Maccallum DM, Quinn J, Coleman DC, Brown AJ, Sullivan DJ. Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress. Molecular Microbiology. 72: 216-28. PMID 19239621 DOI: 10.1111/J.1365-2958.2009.06640.X |
0.755 |
|
2009 |
Borecká-Melkusová S, Moran GP, Sullivan DJ, KucharÃková S, Chorvát D, Bujdáková H. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole. Mycoses. 52: 118-28. PMID 18627475 DOI: 10.1111/J.1439-0507.2008.01550.X |
0.639 |
|
2008 |
Thewes S, Moran GP, Magee BB, Schaller M, Sullivan DJ, Hube B. Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans. Bmc Microbiology. 8: 187. PMID 18950481 DOI: 10.1186/1471-2180-8-187 |
0.617 |
|
2008 |
Melo NR, Moran GP, Warrilow AG, Dudley E, Smith SN, Sullivan DJ, Lamb DC, Kelly DE, Coleman DC, Kelly SL. CYP56 (Dit2p) in Candida albicans: characterization and investigation of its role in growth and antifungal drug susceptibility. Antimicrobial Agents and Chemotherapy. 52: 3718-24. PMID 18663031 DOI: 10.1128/Aac.00446-08 |
0.56 |
|
2008 |
McManus BA, Coleman DC, Moran G, Pinjon E, Diogo D, Bougnoux ME, Borecká-Melkusova S, Bujdákova H, Murphy P, d'Enfert C, Sullivan DJ. Multilocus sequence typing reveals that the population structure of Candida dubliniensis is significantly less divergent than that of Candida albicans. Journal of Clinical Microbiology. 46: 652-64. PMID 18057125 DOI: 10.1128/Jcm.01574-07 |
0.634 |
|
2007 |
Moran GP, MacCallum DM, Spiering MJ, Coleman DC, Sullivan DJ. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Molecular Microbiology. 66: 915-29. PMID 17927699 DOI: 10.1111/J.1365-2958.2007.05965.X |
0.778 |
|
2007 |
Stokes C, Moran GP, Spiering MJ, Cole GT, Coleman DC, Sullivan DJ. Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans. Fungal Genetics and Biology : Fg & B. 44: 920-31. PMID 17251042 DOI: 10.1016/J.Fgb.2006.11.014 |
0.688 |
|
2007 |
Moran GP, Pinjon E, Coleman DC, Sullivan DJ. Analysis of Drug Resistance in Pathogenic Fungi Medical Mycology: Cellular and Molecular Techniques. 93-113. DOI: 10.1002/9780470057414.ch5 |
0.482 |
|
2005 |
Pinjon E, Moran GP, Coleman DC, Sullivan DJ. Azole susceptibility and resistance in Candida dubliniensis. Biochemical Society Transactions. 33: 1210-4. PMID 16246083 DOI: 10.1042/bst0331210 |
0.646 |
|
2005 |
Sullivan DJ, Moran GP, Coleman DC. Candida dubliniensis: ten years on. Fems Microbiology Letters. 253: 9-17. PMID 16213674 DOI: 10.1016/J.Femsle.2005.09.015 |
0.67 |
|
2005 |
Pinjon E, Jackson CJ, Kelly SL, Sanglard D, Moran G, Coleman DC, Sullivan DJ. Reduced azole susceptibility in genotype 3 Candida dubliniensis isolates associated with increased CdCDR1 and CdCDR2 expression. Antimicrobial Agents and Chemotherapy. 49: 1312-8. PMID 15793103 DOI: 10.1128/Aac.49.4.1312-1318.2005 |
0.627 |
|
2005 |
Sullivan D, Moran G, Coleman D. Fungal Diseases of Humans Fungi: Biology and Applications. 171-190. DOI: 10.1002/0470015330.ch7 |
0.416 |
|
2004 |
Moran G, Stokes C, Thewes S, Hube B, Coleman DC, Sullivan D. Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology (Reading, England). 150: 3363-82. PMID 15470115 DOI: 10.1099/Mic.0.27221-0 |
0.676 |
|
2004 |
Sullivan DJ, Moran GP, Pinjon E, Al-Mosaid A, Stokes C, Vaughan C, Coleman DC. Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. Fems Yeast Research. 4: 369-76. PMID 14734017 DOI: 10.1016/S1567-1356(03)00240-X |
0.717 |
|
2003 |
Pinjon E, Moran GP, Jackson CJ, Kelly SL, Sanglard D, Coleman DC, Sullivan DJ. Molecular mechanisms of itraconazole resistance in Candida dubliniensis. Antimicrobial Agents and Chemotherapy. 47: 2424-37. PMID 12878500 DOI: 10.1128/Aac.47.8.2424-2437.2003 |
0.603 |
|
2002 |
Moran G, Sullivan D, Morschhäuser J, Coleman D. The Candida dubliniensis CdCDR1 gene is not essential for fluconazole resistance. Antimicrobial Agents and Chemotherapy. 46: 2829-41. PMID 12183235 DOI: 10.1128/Aac.46.9.2829-2841.2002 |
0.657 |
|
2001 |
Wirsching S, Moran GP, Sullivan DJ, Coleman DC, Morschhäuser J. MDR1-mediated drug resistance in Candida dubliniensis. Antimicrobial Agents and Chemotherapy. 45: 3416-21. PMID 11709317 DOI: 10.1128/Aac.45.12.3416-3421.2001 |
0.628 |
|
2001 |
Staib P, Moran GP, Sullivan DJ, Coleman DC, Morschhäuser J. Isogenic strain construction and gene targeting in Candida dubliniensis. Journal of Bacteriology. 183: 2859-65. PMID 11292806 DOI: 10.1128/Jb.183.9.2859-2865.2001 |
0.682 |
|
1999 |
Sullivan DJ, Moran G, Donnelly S, Gee S, Pinjon E, McCartan B, Shanley DB, Coleman DC. Candida dubliniensis: An update Revista Iberoamericana De Micologia. 16: 72-76. |
0.491 |
|
1998 |
Moran GP, Sanglard D, Donnelly SM, Shanley DB, Sullivan DJ, Coleman DC. Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis. Antimicrobial Agents and Chemotherapy. 42: 1819-30. PMID 9661028 DOI: 10.1128/Aac.42.7.1819 |
0.648 |
|
1997 |
Coleman D, Sullivan D, Harrington B, Haynes K, Henman M, Shanley D, Bennett D, Moran G, McCreary C, O'Neill L. Molecular and phenotypic analysis of Candida dubliniensis: A recently identified species linked with oral candidosis in HIV-infected and AIDS patients Oral Diseases. 3: S96-S101. PMID 9456666 DOI: 10.1111/J.1601-0825.1997.Tb00384.X |
0.687 |
|
1997 |
Coleman DC, Sullivan DJ, Bennett DE, Moran GP, Barry HJ, Shanley DB. Candidiasis: the emergence of a novel species, Candida dubliniensis. Aids (London, England). 11: 557-67. PMID 9108936 DOI: 10.1097/00002030-199705000-00002 |
0.535 |
|
1997 |
Moran GP, Sullivan DJ, Henman MC, McCreary CE, Harrington BJ, Shanley DB, Coleman DC. Antifungal drug susceptibilities of oral Candida dubliniensis isolates from human immunodeficiency virus (HIV)-infected and non-HIV-infected subjects and generation of stable fluconazole-resistant derivatives in vitro. Antimicrobial Agents and Chemotherapy. 41: 617-23. PMID 9056003 DOI: 10.1128/Aac.41.3.617 |
0.615 |
|
1996 |
Sullivan D, Haynes K, Moran G, Shanley D, Coleman D. Persistence, replacement, and microevolution of Cryptococcus neoformans strains in recurrent meningitis in AIDS patients Journal of Clinical Microbiology. 34: 1739-1744. PMID 8784580 DOI: 10.1128/Jcm.34.7.1739-1744.1996 |
0.594 |
|
1996 |
Sullivan DJ, Henman MC, Moran GP, O'Neill LC, Bennett DE, Shanley DB, Coleman DC. Molecular genetic approaches to identification, epidemiology and taxonomy of non-albicans Candida species. Journal of Medical Microbiology. 44: 399-408. PMID 8636956 DOI: 10.1099/00222615-44-6-399 |
0.686 |
|
Show low-probability matches. |