Luciano A. Marraffini, Ph.D. - Publications

Affiliations: 
2007 University of Chicago, Chicago, IL 
Area:
Microbiology Biology, Cell Biology, Molecular Biology

84 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Baca CF, Yu Y, Rostøl JT, Majumder P, Patel DJ, Marraffini LA. The CRISPR effector Cam1 mediates membrane depolarization for phage defence. Nature. 625: 797-804. PMID 38200316 DOI: 10.1038/s41586-023-06902-y  0.362
2023 Banh DV, Roberts CG, Morales-Amador A, Berryhill BA, Chaudhry W, Levin BR, Brady SF, Marraffini LA. Author Correction: Bacterial cGAS senses a viral RNA to initiate immunity. Nature. PMID 38052939 DOI: 10.1038/s41586-023-06929-1  0.747
2023 Banh DV, Roberts CG, Morales-Amador A, Berryhill BA, Chaudhry W, Levin BR, Brady SF, Marraffini LA. Bacterial cGAS senses a viral RNA to initiate immunity. Nature. PMID 37968393 DOI: 10.1038/s41586-023-06743-9  0.767
2023 Stella G, Marraffini L. Type III CRISPR-Cas: beyond the Cas10 effector complex. Trends in Biochemical Sciences. PMID 37949766 DOI: 10.1016/j.tibs.2023.10.006  0.326
2023 Kenney CT, Marraffini LA. Rarely acquired type II-A CRISPR-Cas spacers mediate anti-viral immunity through the targeting of a non-canonical PAM sequence. Nucleic Acids Research. PMID 37293964 DOI: 10.1093/nar/gkad501  0.407
2022 Maguin P, Varble A, Modell JW, Marraffini LA. Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response. Molecular Cell. 82: 907-919.e7. PMID 35134339 DOI: 10.1016/j.molcel.2022.01.012  0.374
2022 Aviram N, Thornal AN, Zeevi D, Marraffini LA. Different modes of spacer acquisition by the Staphylococcus epidermidis type III-A CRISPR-Cas system. Nucleic Acids Research. 50: 1661-1672. PMID 35048966 DOI: 10.1093/nar/gkab1299  0.772
2022 Barrangou R, Marraffini LA. Turning CRISPR on with antibiotics. Cell Host & Microbe. 30: 12-14. PMID 35026132 DOI: 10.1016/j.chom.2021.12.013  0.329
2021 Varble A, Campisi E, Euler CW, Maguin P, Kozlova A, Fyodorova J, Rostøl JT, Fischetti VA, Marraffini LA. Prophage integration into CRISPR loci enables evasion of antiviral immunity in Streptococcus pyogenes. Nature Microbiology. 6: 1516-1525. PMID 34819640 DOI: 10.1038/s41564-021-00996-8  0.428
2021 Hossain AA, McGinn J, Meeske AJ, Modell JW, Marraffini LA. Viral recombination systems limit CRISPR-Cas targeting through the generation of escape mutations. Cell Host & Microbe. 29: 1482-1495.e12. PMID 34582782 DOI: 10.1016/j.chom.2021.09.001  0.388
2021 Mo CY, Mathai J, Rostøl JT, Varble A, Banh DV, Marraffini LA. Type III-A CRISPR immunity promotes mutagenesis of staphylococci. Nature. 592: 611-615. PMID 33828299 DOI: 10.1038/s41586-021-03440-3  0.763
2021 Jakhanwal S, Cress BF, Maguin P, Lobba MJ, Marraffini LA, Doudna JA. A CRISPR-Cas9-integrase complex generates precise DNA fragments for genome integration. Nucleic Acids Research. PMID 33693715 DOI: 10.1093/nar/gkab123  0.378
2021 Rostøl JT, Xie W, Kuryavyi V, Maguin P, Kao K, Froom R, Patel DJ, Marraffini LA. The Card1 nuclease provides defence during type-III CRISPR immunity. Nature. PMID 33461211 DOI: 10.1038/s41586-021-03206-x  0.367
2020 Nussenzweig PM, Marraffini LA. Molecular Mechanisms of CRISPR-Cas Immunity in Bacteria. Annual Review of Genetics. PMID 32857635 DOI: 10.1146/Annurev-Genet-022120-112523  0.461
2020 Meeske AJ, Jia N, Cassel AK, Kozlova A, Liao J, Wiedmann M, Patel DJ, Marraffini LA. A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity. Science (New York, N.Y.). PMID 32467331 DOI: 10.1126/Science.Abb6151  0.502
2020 Shilton AK, Marraffini LA. Shoot the Messenger! A New Phage Weapon to Neutralize the Type III CRISPR Immune Response. Molecular Cell. 78: 568-569. PMID 32442502 DOI: 10.1016/J.Molcel.2020.04.011  0.401
2020 Pyenson NC, Marraffini LA. Co-evolution within structured bacterial communities results in multiple expansion of CRISPR loci and enhanced immunity. Elife. 9. PMID 32223887 DOI: 10.7554/Elife.53078  0.515
2020 Garcia-Doval C, Schwede F, Berk C, Rostøl JT, Niewoehner O, Tejero O, Hall J, Marraffini LA, Jinek M. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6. Nature Communications. 11: 1596. PMID 32221291 DOI: 10.1038/S41467-020-15334-5  0.425
2020 Pyenson NC, Marraffini LA. Author response: Co-evolution within structured bacterial communities results in multiple expansion of CRISPR loci and enhanced immunity Elife. DOI: 10.7554/Elife.53078.Sa2  0.356
2019 Nussenzweig PM, McGinn J, Marraffini LA. Cas9 Cleavage of Viral Genomes Primes the Acquisition of New Immunological Memories. Cell Host & Microbe. PMID 31585845 DOI: 10.1016/J.Chom.2019.09.002  0.46
2019 Meeske AJ, Nakandakari-Higa S, Marraffini LA. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature. PMID 31142834 DOI: 10.1038/S41586-019-1257-5  0.517
2019 Varble A, Marraffini LA. Three New Cs for CRISPR: Collateral, Communicate, Cooperate. Trends in Genetics : Tig. PMID 31036344 DOI: 10.1016/J.Tig.2019.03.009  0.476
2019 Varble A, Meaden S, Barrangou R, Westra ER, Marraffini LA. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci. Nature Microbiology. PMID 30886355 DOI: 10.1038/S41564-019-0400-2  0.46
2019 Rostøl JT, Marraffini L. (Ph)ighting Phages: How Bacteria Resist Their Parasites. Cell Host & Microbe. 25: 184-194. PMID 30763533 DOI: 10.1016/J.Chom.2019.01.009  0.388
2019 Heler R, Wright AV, Vucelja M, Doudna JA, Marraffini LA. Spacer Acquisition Rates Determine the Immunological Diversity of the Type II CRISPR-Cas Immune Response. Cell Host & Microbe. PMID 30709780 DOI: 10.1016/J.Chom.2018.12.016  0.457
2019 Rostøl JT, Marraffini LA. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity. Nature Microbiology. PMID 30692669 DOI: 10.1038/S41564-018-0353-X  0.513
2019 Wang L, Mo CY, Wasserman MR, Rostøl JT, Marraffini LA, Liu S. Dynamics of Cas10 Govern Discrimination between Self and Non-self in Type III CRISPR-Cas Immunity. Molecular Cell. 73: 278-290.e4. PMID 30503774 DOI: 10.1016/J.Molcel.2018.11.008  0.446
2018 Jia N, Mo CY, Wang C, Eng ET, Marraffini LA, Patel DJ. Type III-A CRISPR-Cas Csm Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity. Molecular Cell. PMID 30503773 DOI: 10.1016/J.Molcel.2018.11.007  0.454
2018 Mo CY, Marraffini LA. If You'd Like to Stop a Type III CRISPR Ribonuclease, Then You Should Put a Ring (Nuclease) on It. Molecular Cell. 72: 608-609. PMID 30444997 DOI: 10.1016/J.Molcel.2018.10.048  0.41
2018 McGinn J, Marraffini LA. Molecular mechanisms of CRISPR-Cas spacer acquisition. Nature Reviews. Microbiology. PMID 30171202 DOI: 10.1038/S41579-018-0071-7  0.461
2018 Meeske AJ, Marraffini LA. RNA Guide Complementarity Prevents Self-Targeting in Type VI CRISPR Systems. Molecular Cell. PMID 30122537 DOI: 10.1016/J.Molcel.2018.07.013  0.476
2018 Nussenzweig PM, Marraffini LA. Viral Teamwork Pushes CRISPR to the Breaking Point. Cell. 174: 772-774. PMID 30096306 DOI: 10.1016/J.Cell.2018.07.025  0.315
2018 Clarke R, Heler R, MacDougall MS, Yeo NC, Chavez A, Regan M, Hanakahi L, Church GM, Marraffini LA, Merrill BJ. Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks. Molecular Cell. 71: 42-55.e8. PMID 29979968 DOI: 10.1016/J.Molcel.2018.06.005  0.493
2018 Goldberg GW, McMillan EA, Varble A, Modell JW, Samai P, Jiang W, Marraffini LA. Incomplete prophage tolerance by type III-A CRISPR-Cas systems reduces the fitness of lysogenic hosts. Nature Communications. 9: 61. PMID 29302058 DOI: 10.1038/S41467-017-02557-2  0.443
2017 Pyenson NC, Marraffini LA. Type III CRISPR-Cas systems: when DNA cleavage just isn't enough. Current Opinion in Microbiology. 37: 150-154. PMID 28865392 DOI: 10.1016/J.Mib.2017.08.003  0.435
2017 Pyenson NC, Gayvert K, Varble A, Elemento O, Marraffini LA. Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape. Cell Host & Microbe. PMID 28826839 DOI: 10.1016/J.Chom.2017.07.016  0.44
2017 Niewoehner O, Garcia-Doval C, Rostøl JT, Berk C, Schwede F, Bigler L, Hall J, Marraffini LA, Jinek M. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature. PMID 28722012 DOI: 10.1038/Nature23467  0.467
2017 Modell JW, Jiang W, Marraffini LA. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature. PMID 28355179 DOI: 10.1038/Nature21719  0.466
2017 Marraffini LA. Sensing danger. Proceedings of the National Academy of Sciences of the United States of America. 114: 15-16. PMID 27999179 DOI: 10.1073/Pnas.1618747114  0.482
2016 Heler R, Wright AV, Vucelja M, Bikard D, Doudna JA, Marraffini LA. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response. Molecular Cell. PMID 28017588 DOI: 10.1016/J.Molcel.2016.11.031  0.504
2016 McGinn J, Marraffini LA. CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration. Molecular Cell. 64: 616-623. PMID 27618488 DOI: 10.1016/J.Molcel.2016.08.038  0.395
2016 Sontheimer EJ, Marraffini LA. RNA. CRISPR goes retro. Science (New York, N.Y.). 351: 920-1. PMID 26917756 DOI: 10.1126/Science.Aaf2851  0.688
2016 Jiang W, Samai P, Marraffini LA. Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity. Cell. PMID 26853474 DOI: 10.1016/J.Cell.2015.12.053  0.48
2016 Maniv I, Jiang W, Bikard D, Marraffini LA. Impact of different target sequences on type III CRISPR-Cas immunity. Journal of Bacteriology. PMID 26755632 DOI: 10.1128/Jb.00897-15  0.457
2015 Goldberg GW, Marraffini LA. Resistance and tolerance to foreign elements by prokaryotic immune systems - curating the genome. Nature Reviews. Immunology. 15: 717-24. PMID 26494050 DOI: 10.1038/Nri3910  0.401
2015 Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature. 526: 55-61. PMID 26432244 DOI: 10.1038/Nature15386  0.491
2015 Jiang W, Marraffini LA. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annual Review of Microbiology. 69: 209-28. PMID 26209264 DOI: 10.1146/Annurev-Micro-091014-104441  0.508
2015 Samai P, Pyenson N, Jiang W, Goldberg GW, Hatoum-Aslan A, Marraffini LA. Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity. Cell. 161: 1164-74. PMID 25959775 DOI: 10.1016/J.Cell.2015.04.027  0.513
2015 Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature. 519: 199-202. PMID 25707807 DOI: 10.1038/Nature14245  0.461
2014 Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnology. 32: 1146-50. PMID 25282355 DOI: 10.1038/Nbt.3043  0.425
2014 Goldberg GW, Jiang W, Bikard D, Marraffini LA. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature. 514: 633-7. PMID 25174707 DOI: 10.1038/Nature13637  0.477
2014 Charpentier E, Marraffini LA. Harnessing CRISPR-Cas9 immunity for genetic engineering. Current Opinion in Microbiology. 19: 114-9. PMID 25048165 DOI: 10.1016/J.Mib.2014.07.001  0.501
2014 Heler R, Marraffini LA, Bikard D. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Molecular Microbiology. 93: 1-9. PMID 24806524 DOI: 10.1111/Mmi.12640  0.478
2014 Barrangou R, Marraffini LA. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Molecular Cell. 54: 234-44. PMID 24766887 DOI: 10.1016/J.Molcel.2014.03.011  0.485
2014 Hatoum-Aslan A, Marraffini LA. Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens. Current Opinion in Microbiology. 17: 82-90. PMID 24581697 DOI: 10.1016/J.Mib.2013.12.001  0.443
2014 Hatoum-Aslan A, Maniv I, Samai P, Marraffini LA. Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system. Journal of Bacteriology. 196: 310-7. PMID 24187086 DOI: 10.1128/Jb.01130-13  0.457
2013 Marraffini LA. CRISPR-Cas immunity against phages: its effects on the evolution and survival of bacterial pathogens. Plos Pathogens. 9: e1003765. PMID 24348245 DOI: 10.1371/Journal.Ppat.1003765  0.501
2013 Bikard D, Marraffini LA. Control of gene expression by CRISPR-Cas systems. F1000prime Reports. 5: 47. PMID 24273648 DOI: 10.12703/P5-47  0.389
2013 Jiang W, Maniv I, Arain F, Wang Y, Levin BR, Marraffini LA. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. Plos Genetics. 9: e1003844. PMID 24086164 DOI: 10.1371/Journal.Pgen.1003844  0.448
2013 Hatoum-Aslan A, Samai P, Maniv I, Jiang W, Marraffini LA. A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs. The Journal of Biological Chemistry. 288: 27888-97. PMID 23935102 DOI: 10.1074/Jbc.M113.499244  0.452
2013 Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology. 31: 827-32. PMID 23873081 DOI: 10.1038/Nbt.2647  0.386
2013 Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research. 41: 7429-37. PMID 23761437 DOI: 10.1093/Nar/Gkt520  0.417
2013 Maniv I, Hatoum-Aslan A, Marraffini LA. CRISPR decoys: competitive inhibitors of CRISPR immunity. Rna Biology. 10: 694-9. PMID 23584158 DOI: 10.4161/Rna.24287  0.469
2013 Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology. 31: 233-9. PMID 23360965 DOI: 10.1038/Nbt.2508  0.441
2013 Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, N.Y.). 339: 819-23. PMID 23287718 DOI: 10.1126/Science.1231143  0.464
2012 Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host & Microbe. 12: 177-86. PMID 22901538 DOI: 10.1016/J.Chom.2012.06.003  0.405
2012 Bikard D, Marraffini LA. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. Current Opinion in Immunology. 24: 15-20. PMID 22079134 DOI: 10.1016/J.Coi.2011.10.005  0.432
2011 Hatoum-Aslan A, Maniv I, Marraffini LA. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proceedings of the National Academy of Sciences of the United States of America. 108: 21218-22. PMID 22160698 DOI: 10.1073/Pnas.1112832108  0.414
2010 Sontheimer EJ, Marraffini LA. Microbiology: slicer for DNA. Nature. 468: 45-6. PMID 21048757 DOI: 10.1038/468045A  0.657
2010 Marraffini LA. Impact of CRIPSR immunity on the emergence of bacterial pathogens. Future Microbiology. 5: 693-5. PMID 20441541 DOI: 10.2217/Fmb.10.38  0.398
2010 Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Reviews. Genetics. 11: 181-90. PMID 20125085 DOI: 10.1038/Nrg2749  0.694
2010 Marraffini LA, Sontheimer EJ. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature. 463: 568-71. PMID 20072129 DOI: 10.1038/Nature08703  0.68
2009 Marraffini LA, Sontheimer EJ. Invasive DNA, chopped and in the CRISPR. Structure (London, England : 1993). 17: 786-8. PMID 19523896 DOI: 10.1016/J.Str.2009.05.002  0.617
2008 Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science (New York, N.Y.). 322: 1843-5. PMID 19095942 DOI: 10.1126/Science.1165771  0.659
2008 Budzik JM, Marraffini LA, Souda P, Whitelegge JP, Faull KF, Schneewind O. Amide bonds assemble pili on the surface of bacilli Proceedings of the National Academy of Sciences of the United States of America. 105: 10215-10220. PMID 18621716 DOI: 10.1073/Pnas.0803565105  0.748
2007 Budzik JM, Marraffini LA, Schneewind O. Assembly of pili on the surface of Bacillus cereus vegetative cells Molecular Microbiology. 66: 495-510. PMID 17897374 DOI: 10.1111/J.1365-2958.2007.05939.X  0.766
2007 Marraffini LA, Schneewind O. Sortase C-mediated anchoring of BasI to the cell wall envelope of Bacillus anthracis Journal of Bacteriology. 189: 6425-6436. PMID 17586639 DOI: 10.1128/Jb.00702-07  0.575
2006 Marraffini LA, Schneewind O. Targeting proteins to the cell wall of sporulating Bacillus anthracis Molecular Microbiology. 62: 1402-1417. PMID 17074072 DOI: 10.1111/J.1365-2958.2006.05469.X  0.563
2006 Marraffini LA, Dedent AC, Schneewind O. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria Microbiology and Molecular Biology Reviews. 70: 192-221. PMID 16524923 DOI: 10.1128/Mmbr.70.1.192-221.2006  0.778
2005 Gaspar AH, Marraffini LA, Glass EM, Debord KL, Ton-That H, Schneewind O. Bacillus anthracis sortase A (SrtA) anchors LPXTG motif-containing surface proteins to the cell wall envelope. Journal of Bacteriology. 187: 4646-55. PMID 15968076 DOI: 10.1128/Jb.187.13.4646-4655.2005  0.715
2005 Marraffini LA, Schneewind O. Anchor structure of staphylococcal surface proteins: V. Anchor structure of the sortase B substrate IsdC Journal of Biological Chemistry. 280: 16263-16271. PMID 15718231 DOI: 10.1074/Jbc.M500071200  0.576
2004 Ton-That H, Marraffini LA, Schneewind O. Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochimica Et Biophysica Acta. 1694: 269-78. PMID 15546671 DOI: 10.1016/J.Bbamcr.2004.04.014  0.721
2004 Marraffini LA, Ton-That H, Zong Y, Narayana SV, Schneewind O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. A conserved arginine residue is required for efficient catalysis of sortase A. The Journal of Biological Chemistry. 279: 37763-70. PMID 15247224 DOI: 10.1074/Jbc.M405282200  0.673
2004 Ton-That H, Marraffini LA, Schneewind O. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Molecular Microbiology. 53: 251-61. PMID 15225319 DOI: 10.1111/J.1365-2958.2004.04117.X  0.706
Show low-probability matches.