Year |
Citation |
Score |
2024 |
Malanoski CM, Farnsworth A, Lunt DJ, Valdes PJ, Saupe EE. Climate change is an important predictor of extinction risk on macroevolutionary timescales. Science (New York, N.Y.). 383: 1130-1134. PMID 38452067 DOI: 10.1126/science.adj5763 |
0.378 |
|
2024 |
Qiao H, Peterson AT, Myers CE, Yang Q, Saupe EE. Ecological niche conservatism spurs diversification in response to climate change. Nature Ecology & Evolution. PMID 38374186 DOI: 10.1038/s41559-024-02344-5 |
0.698 |
|
2023 |
Saupe EE. Explanations for latitudinal diversity gradients must invoke rate variation. Proceedings of the National Academy of Sciences of the United States of America. 120: e2306220120. PMID 37535654 DOI: 10.1073/pnas.2306220120 |
0.312 |
|
2023 |
Fenton IS, Aze T, Farnsworth A, Valdes P, Saupe EE. Origination of the modern-style diversity gradient 15 million years ago. Nature. 614: 708-712. PMID 36792825 DOI: 10.1038/s41586-023-05712-6 |
0.396 |
|
2022 |
Darroch SAF, Saupe EE, Casey MM, Jorge MLSP. Integrating geographic ranges across temporal scales. Trends in Ecology & Evolution. PMID 35691773 DOI: 10.1016/j.tree.2022.05.005 |
0.606 |
|
2022 |
Antell GS, Kiessling W, Aberhan M, Saupe EE. Marine Biodiversity and Geographic Distributions Are Independent on Large Scales. Current Biology : Cb. 32: 264. PMID 35015983 DOI: 10.1016/j.cub.2021.12.011 |
0.742 |
|
2021 |
Antell GS, Saupe EE. Bottom-up controls, ecological revolutions and diversification in the oceans through time. Current Biology : Cb. 31: R1237-R1251. PMID 34637737 DOI: 10.1016/j.cub.2021.08.069 |
0.796 |
|
2021 |
Benson RBJ, Butler R, Close RA, Saupe E, Rabosky DL. Biodiversity across space and time in the fossil record. Current Biology : Cb. 31: R1225-R1236. PMID 34637736 DOI: 10.1016/j.cub.2021.07.071 |
0.383 |
|
2021 |
Lyon C, Saupe EE, Smith CJ, Hill DJ, Beckerman AP, Stringer LC, Marchant R, McKay J, Burke A, O'Higgins P, Dunhill AM, Allen BJ, Riel-Salvatore J, Aze T. Climate change research and action must look beyond 2100. Global Change Biology. PMID 34558764 DOI: 10.1111/gcb.15871 |
0.763 |
|
2021 |
Fenton IS, Woodhouse A, Aze T, Lazarus D, Renaudie J, Dunhill AM, Young JR, Saupe EE. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Scientific Data. 8: 160. PMID 34183675 DOI: 10.1038/s41597-021-00942-7 |
0.756 |
|
2021 |
Antell GS, Fenton IS, Valdes PJ, Saupe EE. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. Proceedings of the National Academy of Sciences of the United States of America. 118. PMID 33903233 DOI: 10.1073/pnas.2017105118 |
0.819 |
|
2020 |
Darroch SAF, Casey MM, Antell GS, Sweeney A, Saupe EE. High Preservation Potential of Paleogeographic Range Size Distributions in Deep Time. The American Naturalist. 196: 454-471. PMID 32970459 DOI: 10.1086/710176 |
0.796 |
|
2020 |
Owens HL, Ribeiro V, Saupe EE, Cobos ME, Hosner PA, Cooper JC, Samy AM, Barve V, Barve N, Muñoz-R CJ, Peterson AT. Acknowledging uncertainty in evolutionary reconstructions of ecological niches. Ecology and Evolution. 10: 6967-6977. PMID 32760505 DOI: 10.1002/ece3.6359 |
0.37 |
|
2020 |
Allen BJ, Wignall PB, Hill DJ, Saupe EE, Dunhill AM. The latitudinal diversity gradient of tetrapods across the Permo-Triassic mass extinction and recovery interval. Proceedings. Biological Sciences. 287: 20201125. PMID 32546099 DOI: 10.1098/rspb.2020.1125 |
0.768 |
|
2020 |
Close RA, Benson RBJ, Saupe EE, Clapham ME, Butler RJ. The spatial structure of Phanerozoic marine animal diversity. Science (New York, N.Y.). 368: 420-424. PMID 32327597 DOI: 10.1126/Science.Aay8309 |
0.363 |
|
2020 |
Saupe EE, Qiao H, Donnadieu Y, Farnsworth A, Kennedy-Asser AT, Ladant J, Lunt DJ, Pohl A, Valdes P, Finnegan S. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography Nature Geoscience. 13: 65-70. DOI: 10.1038/S41561-019-0504-6 |
0.476 |
|
2020 |
Casey MM, Saupe EE, Lieberman BS. The effects of geographic range size and abundance on extinction during a time of “sluggish”’ evolution Paleobiology. 47: 54-67. DOI: 10.1017/pab.2020.52 |
0.636 |
|
2019 |
Antell GS, Kiessling W, Aberhan M, Saupe EE. Marine Biodiversity and Geographic Distributions Are Independent on Large Scales. Current Biology : Cb. PMID 31839449 DOI: 10.1016/J.Cub.2019.10.065 |
0.814 |
|
2019 |
Kiessling W, Raja NB, Roden VJ, Turvey ST, Saupe EE. Addressing priority questions of conservation science with palaeontological data. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 374: 20190222. PMID 31679490 DOI: 10.1098/Rstb.2019.0222 |
0.78 |
|
2019 |
Saupe EE, Myers CE, Townsend Peterson A, Soberón J, Singarayer J, Valdes P, Qiao H. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nature Ecology & Evolution. PMID 31501506 DOI: 10.1038/S41559-019-0962-7 |
0.742 |
|
2019 |
Saupe EE, Farnsworth A, Lunt DJ, Sagoo N, Pham KV, Field DJ. Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic. Proceedings of the National Academy of Sciences of the United States of America. PMID 31182570 DOI: 10.1073/Pnas.1903866116 |
0.542 |
|
2019 |
Saupe EE, Myers CE, Peterson AT, Soberón J, Singarayer J, Valdes P, Qiao H. Non‐random latitudinal gradients in range size and niche breadth predicted by spatial patterns of climate Global Ecology and Biogeography. 28: 928-942. DOI: 10.1111/Geb.12904 |
0.729 |
|
2019 |
Haywood AM, Valdes PJ, Aze T, Barlow N, Burke A, Dolan AM, Heydt ASvd, Hill DJ, Jamieson SSR, Otto-bliesner BL, Salzmann U, Saupe E, Voss J. What can Palaeoclimate Modelling do for you Empirical Software Engineering. 3: 1-18. DOI: 10.1007/S41748-019-00093-1 |
0.619 |
|
2018 |
Strotz LC, Saupe EE, Kimmig J, Lieberman BS. Metabolic rates, climate and macroevolution: a case study using Neogene molluscs. Proceedings. Biological Sciences. 285. PMID 30135165 DOI: 10.1098/Rspb.2018.1292 |
0.812 |
|
2018 |
Darroch SAF, Saupe EE. Reconstructing geographic range-size dynamics from fossil data Paleobiology. 44: 25-39. DOI: 10.1017/Pab.2017.25 |
0.426 |
|
2017 |
Saupe EE, Barve N, Owens HL, Cooper JC, Hosner PA, Peterson AT. Reconstructing Ecological Niche Evolution When Niches Are Incompletely Characterized. Systematic Biology. PMID 29088474 DOI: 10.1093/Sysbio/Syx084 |
0.509 |
|
2017 |
Qiao H, Escobar LE, Saupe EE, Ji L, Soberón J. A cautionary note on the use of hypervolume kernel density estimators in ecological niche modelling Global Ecology and Biogeography. 26: 1066-1070. DOI: 10.1111/Geb.12492 |
0.429 |
|
2016 |
Qiao H, Saupe EE, Soberón J, Peterson AT, Myers CE. Impacts of Niche Breadth and Dispersal Ability on Macroevolutionary Patterns. The American Naturalist. 188: 149-62. PMID 27420781 DOI: 10.1086/687201 |
0.706 |
|
2016 |
Saupe EE, Hendricks JR, Portell RW, Dowsett HJ, Haywood A, Hunter SJ, Lieberman BS. Correction to 'Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years'. Proceedings. Biological Sciences / the Royal Society. 283. PMID 27053746 DOI: 10.1098/rspb.2016.0654 |
0.786 |
|
2016 |
McCoy VE, Saupe EE, Lamsdell JC, Tarhan LG, McMahon S, Lidgard S, Mayer P, Whalen CD, Soriano C, Finney L, Vogt S, Clark EG, Anderson RP, Petermann H, Locatelli ER, et al. The 'Tully monster' is a vertebrate. Nature. PMID 26982721 DOI: 10.1038/Nature16992 |
0.755 |
|
2016 |
Lieberman BS, Saupe EE. Palaeoniches get stitches: Analyses of niches informing macroevolutionary theory Lethaia. 49: 145-149. DOI: 10.1111/Let.12170 |
0.632 |
|
2015 |
Manthey JD, Campbell LP, Saupe EE, Soberón J, Hensz CM, Myers CE, Owens HL, Ingenloff K, Townsend Peterson A, Barve N, Lira-Noriega A, Barve V. A test of niche centrality as a determinant of population trends and conservation status in threatened and endangered North American birds Endangered Species Research. 26: 201-208. DOI: 10.3354/Esr00646 |
0.709 |
|
2015 |
Saupe EE, Qiao H, Hendricks JR, Portell RW, Hunter SJ, Soberón J, Lieberman BS. Niche breadth and geographic range size as determinants of species survival on geological time scales Global Ecology and Biogeography. 24: 1159-1169. DOI: 10.1111/Geb.12333 |
0.825 |
|
2014 |
Saupe EE, Hendricks JR, Portell RW, Dowsett HJ, Haywood A, Hunter SJ, Lieberman BS. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proceedings. Biological Sciences / the Royal Society. 281. PMID 25297868 DOI: 10.1098/Rspb.2014.1995 |
0.837 |
|
2014 |
Planas E, Saupe EE, Lima-Ribeiro MS, Peterson AT, Ribera C. Ecological niche and phylogeography elucidate complex biogeographic patterns in Loxosceles rufescens (Araneae, Sicariidae) in the Mediterranean Basin. Bmc Evolutionary Biology. 14: 195. PMID 25297820 DOI: 10.1186/S12862-014-0195-Y |
0.515 |
|
2014 |
Hendricks JR, Saupe EE, Myers CE, Hermsen EJ, Allmon WD. The Generification of the Fossil Record Paleobiology. 40: 511-528. DOI: 10.1666/13076 |
0.809 |
|
2014 |
Saupe EE, Hendricks JR, Townsend Peterson A, Lieberman BS. Climate change and marine molluscs of the western North Atlantic: Future prospects and perils Journal of Biogeography. 41: 1352-1366. DOI: 10.1111/Jbi.12289 |
0.815 |
|
2013 |
Myers CE, Saupe EE. A macroevolutionary expansion of the modern synthesis and the importance of extrinsic abiotic factors Palaeontology. 56: 1179-1198. DOI: 10.1111/Pala.12053 |
0.682 |
|
2013 |
Fuente RPDL, Saupe EE, Selden PA. New lagonomegopid spiders (Araneae: †lagonomegopidae) from Early Cretaceous Spanish amber Journal of Systematic Palaeontology. 11: 531-553. DOI: 10.1080/14772019.2012.725679 |
0.605 |
|
2013 |
Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, Ingenloff K, Lira-Noriega A, Hensz CM, Myers CE, Peterson AT. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas Ecological Modelling. 263: 10-18. DOI: 10.1016/J.Ecolmodel.2013.04.011 |
0.636 |
|
2012 |
Saupe EE, Pérez-de la Fuente R, Selden PA, Delclòs X, Tafforeau P, Soriano C. New Orchestina Simon, 1882 (Araneae: Oonopidae) from Cretaceous ambers of Spain and France: First spiders described using phase-contrast X-ray synchrotron microtomography Palaeontology. 55: 127-143. DOI: 10.1111/J.1475-4983.2011.01123.X |
0.615 |
|
2012 |
Saupe EE, Barve V, Myers CE, Soberón J, Barve N, Hensz CM, Peterson AT, Owens HL, Lira-Noriega A. Variation in niche and distribution model performance: The need for a priori assessment of key causal factors Ecological Modelling. 237: 11-22. DOI: 10.1016/J.Ecolmodel.2012.04.001 |
0.634 |
|
2011 |
Saupe EE, Papes M, Selden PA, Vetter RS. Tracking a medically important spider: climate change, ecological niche modeling, and the brown recluse (Loxosceles reclusa). Plos One. 6: e17731. PMID 21464985 DOI: 10.1371/Journal.Pone.0017731 |
0.698 |
|
2011 |
Saupe EE, Selden PA. The study of fossil spider species Comptes Rendus - Palevol. 10: 181-188. DOI: 10.1016/J.Crpv.2010.10.013 |
0.702 |
|
2010 |
Schmidt AR, Perrichot V, Svojtka M, Anderson KB, Belete KH, Bussert R, Dörfelt H, Jancke S, Mohr B, Mohrmann E, Nascimbene PC, Nel A, Nel P, Ragazzi E, Roghi G, ... Saupe EE, et al. Cretaceous African life captured in amber. Proceedings of the National Academy of Sciences of the United States of America. 107: 7329-34. PMID 20368427 DOI: 10.1073/Pnas.1000948107 |
0.691 |
|
2010 |
Saupe EE, Selden PA, Penney D. First fossil Molinaranea Mello-Leitão, 1940 (Araneae: Araneidae), from middle Miocene Dominican amber, with a phylogenetic and palaeobiogeographical analysis of the genus Zoological Journal of the Linnean Society. 158: 711-725. DOI: 10.1111/J.1096-3642.2009.00581.X |
0.697 |
|
2009 |
Saupe EE, Selden PA. First fossil Mecysmaucheniidae (Arachnida, Chelicerata, Araneae), from Lower Cretaceous (uppermost Albian) amber of Charente-Maritime, France Geodiversitas. 31: 49-60. DOI: 10.5252/G2009N1A5 |
0.622 |
|
Show low-probability matches. |