Area:
Cell migration, Drosophila genetics and cell biology
We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, Debra L. Silver is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2011 — 2013 |
Silver, Debra Lynn |
R00Activity Code Description: To support the second phase of a Career/Research Transition award program that provides 1 -3 years of independent research support (R00) contingent on securing an independent research position. Award recipients will be expected to compete successfully for independent R01 support from the NIH during the R00 research transition award period. |
Analysis of the Exon Junction Complex in Neural Development and Microcephaly
The objectives of this career development proposal are first to expand the Pi's training in neural development and second, to understand why mutation ofan RNA-binding complex component causes reduced brain size. Towards the first objective we have formulated a career development plan to provide necessary scientific and career training for the PI to achieve success as an independent investigator. The training for the K99 phase took place at NHGRI on the NIH campus. For the ROO phase of the proposal, the research will be carried out at Duke University Medical Center. Integral to this training is a panel of advisors that bring together expertise in mouse embryology, neural development, microcephaly, and mitosis. Towards the second objective we will continue our study of a new mouse model of microcephaly we have identified called Mos2. Microcephaly is a genetic disorder in which brain size is significantly reduced resulting in mental retardation. It has been proposed that microcephaly is caused by defects in neural stem cell division in the developing neocortex. There is a need for additional models to further validate this concept. Our initial characterization of Mos2 mutants indicates that neural stem cell function is compromised in these mice due to mutation in a component of the exon junction complex, an RNA-binding complex not previously implicated in neural development. In this proposal we will test the hypothesis that this complex is required for neural stem cell maintenance by regulating asymmetric cell division. In the K99 phase, we characterized the neural stem cell and differentiated neuronal populations in Mos2 mutants to evaluate how neural stem cell function is disrupted. In the ROO phase we will use cell biological and genetic approaches to ask if other components of the exon junction complex regulate brain size and stem cell division. This proposal will provide insight into regulation of neural development, the mechanism of microcephaly and other neurodevelopmental diseases, and specifically address the role of RNA binding proteins in these processes. Pursuing these aims will provide the necessary foundation for a career as an independent investigator in neural development.
|
0.97 |