Year |
Citation |
Score |
2023 |
Vadnala RN, Hannenhalli S, Narlikar L, Siddharthan R. Transcription factors organize into functional groups on the linear genome and in 3D chromatin. Heliyon. 9: e18211. PMID 37520992 DOI: 10.1016/j.heliyon.2023.e18211 |
0.521 |
|
2021 |
Biswas A, Narlikar L. A universal framework for detecting -regulatory diversity in DNA regulatory regions. Genome Research. PMID 34285090 DOI: 10.1101/gr.274563.120 |
0.592 |
|
2021 |
Biswas A, Narlikar L. A universal framework for detecting -regulatory diversity in DNA regulatory regions. Genome Research. PMID 34285090 DOI: 10.1101/gr.274563.120 |
0.592 |
|
2021 |
Biswas A, Narlikar L. Resolving diverse protein-DNA footprints from exonuclease-based ChIP experiments. Bioinformatics (Oxford, England). 37: i367-i375. PMID 34252930 DOI: 10.1093/bioinformatics/btab274 |
0.46 |
|
2021 |
Sreekumar L, Kumari K, Guin K, Bakshi A, Varshney N, Thimmappa BC, Narlikar L, Padinhateeri R, Siddharthan R, Sanyal K. Orc4 spatiotemporally stabilizes centromeric chromatin. Genome Research. PMID 33514624 DOI: 10.1101/gr.265900.120 |
0.409 |
|
2018 |
Mitra S, Biswas A, Narlikar L. DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP. Plos Computational Biology. 14: e1006090. PMID 29684008 DOI: 10.1371/Journal.Pcbi.1006090 |
0.61 |
|
2017 |
Agrawal A, Sambare SV, Narlikar L, Siddharthan R. THiCweed: fast, sensitive detection of sequence features by clustering big datasets. Nucleic Acids Research. PMID 29267972 DOI: 10.1093/Nar/Gkx1251 |
0.642 |
|
2015 |
Mitra S, Narlikar L. No Promoter Left Behind (NPLB): learn de novo promoter architectures from genome-wide transcription start sites. Bioinformatics (Oxford, England). PMID 26530723 DOI: 10.1093/Bioinformatics/Btv645 |
0.521 |
|
2015 |
Taher L, Narlikar L, Ovcharenko I. Identification and computational analysis of gene regulatory elements. Cold Spring Harbor Protocols. 2015: pdb.top083642. PMID 25561628 DOI: 10.1101/Pdb.Top083642 |
0.473 |
|
2014 |
Narlikar L. Multiple novel promoter-architectures revealed by decoding the hidden heterogeneity within the genome. Nucleic Acids Research. 42: 12388-403. PMID 25326324 DOI: 10.1093/Nar/Gku924 |
0.542 |
|
2013 |
Narlikar L, Mehta N, Galande S, Arjunwadkar M. One size does not fit all: on how Markov model order dictates performance of genomic sequence analyses. Nucleic Acids Research. 41: 1416-24. PMID 23267010 DOI: 10.1093/Nar/Gks1285 |
0.442 |
|
2013 |
Narlikar L. MuMoD: a Bayesian approach to detect multiple modes of protein-DNA binding from genome-wide ChIP data. Nucleic Acids Research. 41: 21-32. PMID 23093591 DOI: 10.1093/Nar/Gks950 |
0.642 |
|
2012 |
Taher L, Narlikar L, Ovcharenko I. CLARE: Cracking the LAnguage of Regulatory Elements. Bioinformatics (Oxford, England). 28: 581-3. PMID 22199387 DOI: 10.1093/Bioinformatics/Btr704 |
0.476 |
|
2012 |
Narlikar L, Jothi R. ChIP-Seq data analysis: identification of protein-DNA binding sites with SISSRs peak-finder. Methods in Molecular Biology (Clifton, N.J.). 802: 305-22. PMID 22130889 DOI: 10.1007/978-1-61779-400-1_20 |
0.591 |
|
2011 |
Wei G, Abraham BJ, Yagi R, Jothi R, Cui K, Sharma S, Narlikar L, Northrup DL, Tang Q, Paul WE, Zhu J, Zhao K. Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. Immunity. 35: 299-311. PMID 21867929 DOI: 10.1016/J.Immuni.2011.08.007 |
0.427 |
|
2010 |
Narlikar L, Sakabe NJ, Blanski AA, Arimura FE, Westlund JM, Nobrega MA, Ovcharenko I. Genome-wide discovery of human heart enhancers. Genome Research. 20: 381-92. PMID 20075146 DOI: 10.1101/Gr.098657.109 |
0.492 |
|
2010 |
Gordân R, Narlikar L, Hartemink AJ. Finding regulatory DNA motifs using alignment-free evolutionary conservation information. Nucleic Acids Research. 38: e90. PMID 20047961 DOI: 10.1093/Nar/Gkp1166 |
0.743 |
|
2009 |
Narlikar L, Ovcharenko I. Identifying regulatory elements in eukaryotic genomes. Briefings in Functional Genomics & Proteomics. 8: 215-30. PMID 19498043 DOI: 10.1093/Bfgp/Elp014 |
0.591 |
|
2008 |
Gordân R, Narlikar L, Hartemink AJ. A fast, alignment-free, conservation-based method for transcription factor binding site discovery Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 4955: 98-111. DOI: 10.1007/978-3-540-78839-3_9 |
0.798 |
|
2007 |
Narlikar L, Gordân R, Hartemink AJ. A nucleosome-guided map of transcription factor binding sites in yeast. Plos Computational Biology. 3: e215. PMID 17997593 DOI: 10.1371/Journal.Pcbi.0030215 |
0.749 |
|
2007 |
Narlikar L, Gordân R, Hartemink AJ. Nucleosome occupancy information improves de novo motif discovery Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 4453: 107-121. |
0.778 |
|
2006 |
Narlikar L, Gordân R, Ohler U, Hartemink AJ. Informative priors based on transcription factor structural class improve de novo motif discovery. Bioinformatics (Oxford, England). 22: e384-92. PMID 16873497 DOI: 10.1093/Bioinformatics/Btl251 |
0.743 |
|
2006 |
Narlikar L, Hartemink AJ. Sequence features of DNA binding sites reveal structural class of associated transcription factor. Bioinformatics (Oxford, England). 22: 157-63. PMID 16267080 DOI: 10.1093/Bioinformatics/Bti731 |
0.755 |
|
Show low-probability matches. |