Joyce A. Lloyd - Publications

Affiliations: 
Human Genetics Virginia Commonwealth University, Richmond, VA, United States 
Area:
Genetics, Molecular Biology

34 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2018 Kovilakath A, Mohamad S, Hermes F, Wang SZ, Ginder GD, Lloyd JA. In Vitro Erythroid Differentiation and Lentiviral Knockdown in Human CD34+ Cells from Umbilical Cord Blood. Methods in Molecular Biology (Clifton, N.J.). 1698: 259-274. PMID 29076096 DOI: 10.1007/978-1-4939-7428-3_16  0.402
2018 Lloyd JA. An Introduction to Erythropoiesis Approaches. Methods in Molecular Biology (Clifton, N.J.). 1698: 1-10. PMID 29076081 DOI: 10.1007/978-1-4939-7428-3_1  0.436
2016 Huang RT, Wu D, Meliton A, Oh MJ, Krause M, Lloyd JA, Nigdelioglu R, Hamanaka RB, Jain MK, Birukova A, Kress JP, Birukov KG, Mutlu GM, Fang Y. Experimental Lung Injury Reduces KLF2 to Increase Endothelial Permeability via Regulation of RAPGEF3-Rac1 Signaling. American Journal of Respiratory and Critical Care Medicine. PMID 27855271 DOI: 10.1164/Rccm.201604-0668Oc  0.35
2016 Vinjamur DS, Alhashem YN, Mohamad SF, Amin P, Williams DC, Lloyd JA. Krüppel-Like Transcription Factor KLF1 Is Required for Optimal γ- and β-Globin Expression in Human Fetal Erythroblasts. Plos One. 11: e0146802. PMID 26840243 DOI: 10.1371/Journal.Pone.0146802  0.787
2016 Vinjamur DS, Alhashem YN, Mohamad SF, Amin P, Williams DC, Lloyd JA. Krüppel-Like transcription factor KLF1 Is required for optimal γ- and β-globin expression in human fetal erythroblasts Plos One. 11. DOI: 10.1371/journal.pone.0146802  0.777
2014 Vinjamur DS, Wade KJ, Mohamad SF, Haar JL, Sawyer ST, Lloyd JA. Krüppel-like transcription factors KLF1 and KLF2 have unique and coordinate roles in regulating embryonic erythroid precursor maturation. Haematologica. 99: 1565-73. PMID 25150253 DOI: 10.3324/Haematol.2014.104943  0.589
2014 Redmond LC, Pang CJ, Dumur C, Haar JL, Lloyd JA. Laser capture microdissection of embryonic cells and preparation of RNA for microarray assays. Methods in Molecular Biology (Clifton, N.J.). 1092: 43-60. PMID 24318813 DOI: 10.1007/978-1-60327-292-6_4  0.769
2013 Chiplunkar AR, Curtis BC, Eades GL, Kane MS, Fox SJ, Haar JL, Lloyd JA. The Krüppel-like factor 2 and Krüppel-like factor 4 genes interact to maintain endothelial integrity in mouse embryonic vasculogenesis. Bmc Developmental Biology. 13: 40. PMID 24261709 DOI: 10.1186/1471-213X-13-40  0.776
2013 Chiplunkar AR, Lung TK, Alhashem Y, Koppenhaver BA, Salloum FN, Kukreja RC, Haar JL, Lloyd JA. Krüppel-like factor 2 is required for normal mouse cardiac development. Plos One. 8: e54891. PMID 23457456 DOI: 10.1371/Journal.Pone.0054891  0.748
2012 Pang CJ, Lemsaddek W, Alhashem YN, Bondzi C, Redmond LC, Ah-Son N, Dumur CI, Archer KJ, Haar JL, Lloyd JA, Trudel M. Kruppel-like factor 1 (KLF1), KLF2, and Myc control a regulatory network essential for embryonic erythropoiesis. Molecular and Cellular Biology. 32: 2628-44. PMID 22566683 DOI: 10.1128/Mcb.00104-12  0.815
2011 Alhashem YN, Vinjamur DS, Basu M, Klingmüller U, Gaensler KM, Lloyd JA. Transcription factors KLF1 and KLF2 positively regulate embryonic and fetal beta-globin genes through direct promoter binding. The Journal of Biological Chemistry. 286: 24819-27. PMID 21610079 DOI: 10.1074/Jbc.M111.247536  0.829
2011 Redmond LC, Dumur CI, Archer KJ, Grayson DR, Haar JL, Lloyd JA. Krüppel-like factor 2 regulated gene expression in mouse embryonic yolk sac erythroid cells. Blood Cells, Molecules & Diseases. 47: 1-11. PMID 21530336 DOI: 10.1016/J.Bcmd.2011.03.002  0.847
2010 Jeon HY, Choi M, Howlett EL, Vozhilla N, Yoo BK, Lloyd JA, Sarkar D, Lee SG, Fisher PB. Expression patterns of astrocyte elevated gene-1 (AEG-1) during development of the mouse embryo. Gene Expression Patterns : Gep. 10: 361-7. PMID 20736086 DOI: 10.1016/J.Gep.2010.08.004  0.448
2009 Abutin RM, Chen J, Lung TK, Lloyd JA, Sawyer ST, Harada H. Erythropoietin-induced phosphorylation/degradation of BIM contributes to survival of erythroid cells. Experimental Hematology. 37: 151-8. PMID 19100675 DOI: 10.1016/J.Exphem.2008.10.008  0.311
2008 Redmond LC, Dumur CI, Archer KJ, Haar JL, Lloyd JA. Identification of erythroid-enriched gene expression in the mouse embryonic yolk sac using microdissected cells. Developmental Dynamics : An Official Publication of the American Association of Anatomists. 237: 436-46. PMID 18213587 DOI: 10.1002/Dvdy.21426  0.831
2007 Basu P, Lung TK, Lemsaddek W, Sargent TG, Williams DC, Basu M, Redmond LC, Lingrel JB, Haar JL, Lloyd JA. EKLF and KLF2 have compensatory roles in embryonic beta-globin gene expression and primitive erythropoiesis. Blood. 110: 3417-25. PMID 17675555 DOI: 10.1182/Blood-2006-11-057307  0.798
2007 Haar JL, Lung T, Redmond L, Basu M, Lloyd JA. Morphhologic changes in mouse EKLF and KLF2 double knockout 9 day embryo and yolk sac The Faseb Journal. 21. DOI: 10.1096/Fasebj.21.5.A231  0.768
2007 Redmond LC, Haar JL, Dumur CI, Archer KJ, Basu P, Lloyd JA. Comparing genetic profiles of embryonic day 9 (E9) mouse yolk sac erythroid and erythroid and epithelial cells isolated by microdissection Blood Cells, Molecules, and Diseases. 38: 175. DOI: 10.1016/J.Bcmd.2006.10.124  0.784
2007 Basu P, Lemsaddek W, Sargent TG, Lung T, Basu M, Lingrel J, Haar J, Lloyd J. 73EKLF and KLF2 have compensatory roles in embryonic globin gene expression and primitive erythropoiesis Blood Cells Molecules and Diseases. 38: 155. DOI: 10.1016/J.Bcmd.2006.10.084  0.544
2006 Redmond LC, Haar JL, Giebel ML, Dumur CI, Basu P, Ware JL, Lloyd JA. Isolation of erythroid cells from the mouse embryonic yolk sac by laser capture microdissection and subsequent microarray hybridization. Blood Cells, Molecules & Diseases. 37: 27-32. PMID 16697667 DOI: 10.1016/J.Bcmd.2006.02.006  0.809
2006 Chervenak AP, Basu P, Shin M, Redmond LC, Sheng G, Lloyd JA. Identification, characterization, and expression pattern of the chicken EKLF gene. Developmental Dynamics : An Official Publication of the American Association of Anatomists. 235: 1933-40. PMID 16680725 DOI: 10.1002/Dvdy.20829  0.811
2006 Rupon JW, Wang SZ, Gaensler K, Lloyd J, Ginder GD. Methyl binding domain protein 2 mediates gamma-globin gene silencing in adult human betaYAC transgenic mice. Proceedings of the National Academy of Sciences of the United States of America. 103: 6617-22. PMID 16608912 DOI: 10.1073/Pnas.0509322103  0.5
2005 Zhang P, Basu P, Redmond LC, Morris PE, Rupon JW, Ginder GD, Lloyd JA. A functional screen for Krüppel-like factors that regulate the human gamma-globin gene through the CACCC promoter element. Blood Cells, Molecules & Diseases. 35: 227-35. PMID 16023392 DOI: 10.1016/J.Bcmd.2005.04.009  0.835
2005 Basu P, Morris PE, Haar JL, Wani MA, Lingrel JB, Gaensler KM, Lloyd JA. KLF2 is essential for primitive erythropoiesis and regulates the human and murine embryonic beta-like globin genes in vivo. Blood. 106: 2566-71. PMID 15947087 DOI: 10.1182/Blood-2005-02-0674  0.604
2005 Rupon JW, Wang S, Gaensler K, Lloyd J, Ginder GD. Methyl Binding Domain Protein 2 Mediates gamma-Globin Silencing in Adult beta-YAC Transgenic Mice. Blood. 106: 3626-3626. DOI: 10.1182/Blood.V106.11.3626.3626  0.523
2004 Basu P, Sargent TG, Redmond LC, Aisenberg JC, Kransdorf EP, Wang SZ, Ginder GD, Lloyd JA. Evolutionary conservation of KLF transcription factors and functional conservation of human gamma-globin gene regulation in chicken. Genomics. 84: 311-9. PMID 15233995 DOI: 10.1016/J.Ygeno.2004.02.013  0.783
2001 Sargent TG, Lloyd JA. The human gamma-globin TATA and CACCC elements have key, distinct roles in suppressing beta-globin gene expression in embryonic/fetal development. The Journal of Biological Chemistry. 276: 41817-24. PMID 11551906 DOI: 10.1074/Jbc.M103073200  0.814
1999 Case SS, Huber P, Lloyd JA. The gammaPE complex contains both SATB1 and HOXB2 and has positive and negative roles in human gamma-globin gene regulation. Dna and Cell Biology. 18: 805-17. PMID 10595394 DOI: 10.1089/104454999314809  0.443
1999 Sargent TG, Buller AM, Teachey DT, McCanna KS, Lloyd JA. The gamma-globin promoter has a major role in competitive inhibition of beta-globin gene expression in early erythroid development. Dna and Cell Biology. 18: 293-303. PMID 10235112 DOI: 10.1089/104454999315358  0.815
1999 Sargent TG, DuBois CC, Buller AM, Lloyd JA. The roles of 5'-HS2, 5'-HS3, and the gamma-globin TATA, CACCC, and stage selector elements in suppression of beta-globin expression in early development. The Journal of Biological Chemistry. 274: 11229-36. PMID 10196210 DOI: 10.1074/Jbc.274.16.11229  0.801
1993 Anderson KP, Lloyd JA, Ponce E, Crable SC, Neumann JC, Lingrel JB. Regulated expression of the human beta globin gene in transgenic mice requires an upstream globin or nonglobin promoter. Molecular Biology of the Cell. 4: 1077-85. PMID 8298193 DOI: 10.1091/Mbc.4.10.1077  0.448
1992 Lloyd JA, Krakowsky JM, Crable SC, Lingrel JB. Human gamma- to beta-globin gene switching using a mini construct in transgenic mice. Molecular and Cellular Biology. 12: 1561-7. PMID 1549112 DOI: 10.1128/Mcb.12.4.1561  0.447
1991 Ponce E, Lloyd JA, Pierani A, Roeder RG, Lingrel JB. Transcription factor OTF-1 interacts with two distinct DNA elements in the A gamma-globin gene promoter. Biochemistry. 30: 2961-7. PMID 2007132 DOI: 10.1021/Bi00225A033  0.398
1989 Lloyd JA, Lee RF, Lingrel JB. Mutations in two regions upstream of the A gamma globin gene canonical promoter affect gene expression. Nucleic Acids Research. 17: 4339-52. PMID 2472607 DOI: 10.1093/Nar/17.11.4339  0.381
Show low-probability matches.