Year |
Citation |
Score |
2024 |
Li R, Romano JD, Chen Y, Moore JH. Centralized and Federated Models for the Analysis of Clinical Data. Annual Review of Biomedical Data Science. PMID 38723657 DOI: 10.1146/annurev-biodatasci-122220-115746 |
0.726 |
|
2024 |
Romano JD, Truong V, Kumar R, Venkatesan M, Graham BE, Hao Y, Matsumoto N, Li X, Wang Z, Ritchie MD, Shen L, Moore JH. The Alzheimer's Knowledge Base: A Knowledge Graph for Alzheimer Disease Research. Journal of Medical Internet Research. 26: e46777. PMID 38635981 DOI: 10.2196/46777 |
0.694 |
|
2023 |
Romano JD, Mei L, Senn J, Moore JH, Mortensen HM. Exploring genetic influences on adverse outcome pathways using heuristic simulation and graph data science. Computational Toxicology (Amsterdam, Netherlands). 25. PMID 37829618 DOI: 10.1016/j.comtox.2023.100261 |
0.501 |
|
2023 |
Romano JD, Li H, Napolitano T, Realubit R, Karan C, Holford M, Tatonetti NP. Discovering Venom-Derived Drug Candidates Using Differential Gene Expression. Toxins. 15. PMID 37505720 DOI: 10.3390/toxins15070451 |
0.581 |
|
2023 |
Hao Y, Romano JD, Moore JH. Knowledge graph aids comprehensive explanation of drug and chemical toxicity. Cpt: Pharmacometrics & Systems Pharmacology. PMID 37475158 DOI: 10.1002/psp4.12975 |
0.702 |
|
2022 |
Hao Y, Romano JD, Moore JH. Knowledge-guided deep learning models of drug toxicity improve interpretation. Patterns (New York, N.Y.). 3: 100565. PMID 36124309 DOI: 10.1016/j.patter.2022.100565 |
0.715 |
|
2022 |
Romano JD, Hao Y, Moore JH, Penning TM. Automating Predictive Toxicology Using ComptoxAI. Chemical Research in Toxicology. PMID 35819939 DOI: 10.1021/acs.chemrestox.2c00074 |
0.718 |
|
2022 |
Romano JD, Hao Y, Moore JH. Improving QSAR Modeling for Predictive Toxicology using Publicly Aggregated Semantic Graph Data and Graph Neural Networks. Pacific Symposium On Biocomputing. Pacific Symposium On Biocomputing. 27: 187-198. PMID 34890148 |
0.706 |
|
2021 |
Manduchi E, Romano JD, Moore JH. The promise of automated machine learning for the genetic analysis of complex traits. Human Genetics. PMID 34713318 DOI: 10.1007/s00439-021-02393-x |
0.473 |
|
2021 |
Romano JD, Le TT, La Cava W, Gregg JT, Goldberg DJ, Chakraborty P, Ray NL, Himmelstein D, Fu W, Moore JH. PMLB v1.0: An open-source dataset collection for benchmarking machine learning methods. Bioinformatics (Oxford, England). PMID 34677586 DOI: 10.1093/bioinformatics/btab727 |
0.496 |
|
2020 |
Romano JD, Moore JH. Ten simple rules for writing a paper about scientific software. Plos Computational Biology. 16: e1008390. PMID 33180774 DOI: 10.1371/journal.pcbi.1008390 |
0.477 |
|
2020 |
Manduchi E, Fu W, Romano JD, Ruberto S, Moore JH. Embedding covariate adjustments in tree-based automated machine learning for biomedical big data analyses. Bmc Bioinformatics. 21: 430. PMID 32998684 DOI: 10.1186/s12859-020-03755-4 |
0.517 |
|
2019 |
Romano JD, Tatonetti NP. Informatics and Computational Methods in Natural Product Drug Discovery: A Review and Perspectives. Frontiers in Genetics. 10: 368. PMID 31114606 DOI: 10.3389/Fgene.2019.00368 |
0.665 |
|
2016 |
Romano JD, Tatonetti NP. Using a Novel Ontology to Inform the Discovery of Therapeutic Peptides from Animal Venoms. Amia Joint Summits On Translational Science Proceedings. Amia Joint Summits On Translational Science. 2016: 209-18. PMID 27570672 |
0.613 |
|
2015 |
Romano JD, Tatonetti NP. VenomKB, a new knowledge base for facilitating the validation of putative venom therapies. Scientific Data. 2: 150065. PMID 26601758 DOI: 10.1038/Sdata.2015.65 |
0.651 |
|
2015 |
Boland MR, Jacunski A, Lorberbaum T, Romano JD, Moskovitch R, Tatonetti NP. Systems biology approaches for identifying adverse drug reactions and elucidating their underlying biological mechanisms. Wiley Interdisciplinary Reviews. Systems Biology and Medicine. PMID 26559926 DOI: 10.1002/Wsbm.1323 |
0.525 |
|
2015 |
Romano JD, Tharp WG, Sarkar IN. Adapting simultaneous analysis phylogenomic techniques to study complex disease gene relationships. Journal of Biomedical Informatics. 54: 10-38. PMID 25592479 DOI: 10.1016/J.Jbi.2015.01.002 |
0.641 |
|
Show low-probability matches. |