Tania A. Baker - Publications

Affiliations: 
Biology Massachusetts Institute of Technology, Cambridge, MA, United States 
Area:
macromolecular machines
Website:
https://biology.mit.edu/people/tania_baker

186 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Mawla GD, Kamal SM, Cao LY, Purhonen P, Hebert H, Sauer RT, Baker TA, Römling U. The membrane-cytoplasmic linker defines activity of FtsH proteases in Pseudomonas aeruginosa clone C. The Journal of Biological Chemistry. 105622. PMID 38176647 DOI: 10.1016/j.jbc.2023.105622  0.552
2023 Ghanbarpour A, Cohen SE, Fei X, Kinman LF, Bell TA, Zhang JJ, Baker TA, Davis JH, Sauer RT. A closed translocation channel in the substrate-free AAA+ ClpXP protease diminishes rogue degradation. Nature Communications. 14: 7281. PMID 37949857 DOI: 10.1038/s41467-023-43145-x  0.525
2023 Kasal MR, Kotamarthi HC, Johnson MM, Stephens HM, Lang MJ, Sauer RT, Baker TA. Lon degrades stable substrates slowly but with enhanced processivity, redefining the attributes of a successful AAA+ protease. Cell Reports. 42: 113061. PMID 37660294 DOI: 10.1016/j.celrep.2023.113061  0.817
2023 Ghanbarpour A, Fei X, Baker TA, Davis JH, Sauer RT. The SspB adaptor drives structural changes in the AAA+ ClpXP protease during ssrA-tagged substrate delivery. Proceedings of the National Academy of Sciences of the United States of America. 120: e2219044120. PMID 36730206 DOI: 10.1073/pnas.2219044120  0.617
2023 Morehouse JP, Baker TA, Sauer RT. FtsH degrades dihydrofolate reductase by recognizing a partially folded species. Protein Science : a Publication of the Protein Society. 31: e4410. PMID 36630366 DOI: 10.1002/pro.4410  0.592
2022 Hari SB, Morehouse JP, Baker TA, Sauer RT. FtsH degrades kinetically stable dimers of cyclopropane fatty acid synthase via an internal degron. Molecular Microbiology. PMID 36456794 DOI: 10.1111/mmi.15009  0.573
2022 Kim S, Fei X, Sauer RT, Baker TA. AAA+ protease-adaptor structures reveal altered conformations and ring specialization. Nature Structural & Molecular Biology. 29: 1068-1079. PMID 36329286 DOI: 10.1038/s41594-022-00850-3  0.579
2021 Sauer RT, Fei X, Bell TA, Baker TA. Structure and function of ClpXP, a AAA+ proteolytic machine powered by probabilistic ATP hydrolysis. Critical Reviews in Biochemistry and Molecular Biology. 1-17. PMID 34923891 DOI: 10.1080/10409238.2021.1979461  0.578
2021 Zuromski KL, Kim S, Sauer RT, Baker TA. Division of labor between the pore-1 loops of the D1 and D2 AAA+ rings coordinates substrate selectivity of the ClpAP protease. The Journal of Biological Chemistry. 101407. PMID 34780718 DOI: 10.1016/j.jbc.2021.101407  0.559
2021 Baytshtok V, Fei X, Shih TT, Grant RA, Santos JC, Baker TA, Sauer RT. Heat activates the AAA+ HslUV protease by melting an axial autoinhibitory plug. Cell Reports. 34: 108639. PMID 33472065 DOI: 10.1016/j.celrep.2020.108639  0.549
2020 Kim S, Zuromski KL, Bell TA, Sauer RT, Baker TA. ClpAP proteolysis does not require rotation of the ClpA unfoldase relative to ClpP. Elife. 9. PMID 33258771 DOI: 10.7554/eLife.61451  0.582
2020 Mawla GD, Hall BM, Cárcamo-Oyarce G, Grant RA, Zhang JJ, Kardon JR, Ribbeck K, Sauer RT, Baker TA. ClpP1P2 peptidase activity promotes biofilm formation in P. aeruginosa. Molecular Microbiology. PMID 33231899 DOI: 10.1111/mmi.14649  0.479
2020 Saunders RA, Stinson BM, Baker TA, Sauer RT. Multistep substrate binding and engagement by the AAA+ ClpXP protease. Proceedings of the National Academy of Sciences of the United States of America. PMID 33106413 DOI: 10.1073/pnas.2010804117  0.599
2020 Fei X, Bell TA, Barkow SR, Baker TA, Sauer RT. Structural basis of ClpXP recognition and unfolding of ssrA-tagged substrates. Elife. 9. PMID 33089779 DOI: 10.7554/eLife.61496  0.608
2020 Zuromski KL, Sauer RT, Baker TA. Modular and coordinated activity of AAA+ active sites in the double-ring ClpA unfoldase of the ClpAP protease. Proceedings of the National Academy of Sciences of the United States of America. PMID 33020301 DOI: 10.1073/pnas.2014407117  0.492
2020 Torres-Delgado A, Kotamarthi HC, Sauer RT, Baker TA. The intrinsically disordered N-terminal extension of the ClpS adaptor reprograms its partner AAA+ ClpAP protease. Journal of Molecular Biology. PMID 32687854 DOI: 10.1016/J.Jmb.2020.07.007  0.83
2020 Fei X, Bell TA, Jenni S, Stinson BM, Baker TA, Harrison SC, Sauer RT. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. Elife. 9. PMID 32108573 DOI: 10.7554/Elife.52774  0.686
2020 Kotamarthi HC, Sauer RT, Baker TA. The Non-dominant AAA+ Ring in the ClpAP Protease Functions as an Anti-stalling Motor to Accelerate Protein Unfolding and Translocation. Cell Reports. 30: 2644-2654.e3. PMID 32101742 DOI: 10.1016/J.Celrep.2020.01.110  0.806
2020 Kardon JR, Moroco JA, Engen JR, Baker TA. Mitochondrial ClpX activates an essential biosynthetic enzyme through partial unfolding. Elife. 9. PMID 32091391 DOI: 10.7554/Elife.54387  0.496
2020 Kardon JR, Moroco JA, Engen JR, Baker TA. Author response: Mitochondrial ClpX activates an essential biosynthetic enzyme through partial unfolding Elife. DOI: 10.7554/Elife.54387.Sa2  0.322
2020 Fei X, Bell TA, Jenni S, Stinson BM, Baker TA, Harrison SC, Sauer RT. Author response: Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate Elife. DOI: 10.7554/Elife.52774.Sa2  0.598
2019 Bell TA, Baker TA, Sauer RT. Interactions between a subset of substrate side chains and AAA+ motor pore loops determine grip during protein unfolding. Elife. 8. PMID 31251172 DOI: 10.7554/Elife.46808  0.605
2019 Amor AJ, Schmitz KR, Baker TA, Sauer RT. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation. Protein Science : a Publication of the Protein Society. PMID 30767302 DOI: 10.1002/Pro.3590  0.564
2019 Bell TA, Baker TA, Sauer RT. Author response: Interactions between a subset of substrate side chains and AAA+ motor pore loops determine grip during protein unfolding Elife. DOI: 10.7554/Elife.46808.017  0.559
2018 Brown BL, Vieux EF, Kalastavadi T, Kim S, Chen JZ, Baker TA. N domain of the Lon AAA+ protease controls assembly and substrate choice. Protein Science : a Publication of the Protein Society. PMID 30461098 DOI: 10.1002/Pro.3553  0.546
2018 Bell TA, Baker TA, Sauer RT. Hinge-linker elements in the AAA+ protein unfoldase ClpX mediate intersubunit communication, assembly, and mechanical activity. Biochemistry. PMID 30418765 DOI: 10.1021/Acs.Biochem.8B00907  0.663
2018 Brown BL, Kardon JR, Sauer RT, Baker TA. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme. Structure (London, England : 1993). PMID 29551290 DOI: 10.1016/J.Str.2018.02.012  0.589
2018 Olivares AO, Baker TA, Sauer RT. Mechanical Protein Unfolding and Degradation. Annual Review of Physiology. 80: 413-429. PMID 29433415 DOI: 10.1146/Annurev-Physiol-021317-121303  0.673
2018 Chandra Kotamarthi H, Sauer R, Baker T. Deciphering the Role of ATPase Domains of CLPA using Single-Molecule Optical Tweezers Biophysical Journal. 114: 170a. DOI: 10.1016/J.Bpj.2017.11.948  0.494
2017 Yien YY, Ducamp S, van der Vorm LN, Kardon JR, Manceau H, Kannengiesser C, Bergonia HA, Kafina MD, Karim Z, Gouya L, Baker TA, Puy H, Phillips JD, Nicolas G, Paw BH. Mutation in human CLPX elevates levels of δ-aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Proceedings of the National Academy of Sciences of the United States of America. PMID 28874591 DOI: 10.1073/Pnas.1700632114  0.362
2017 Olivares AO, Kotamarthi HC, Stein BJ, Sauer RT, Baker TA. Effect of directional pulling on mechanical protein degradation by ATP-dependent proteolytic machines. Proceedings of the National Academy of Sciences of the United States of America. PMID 28724722 DOI: 10.1073/Pnas.1707794114  0.84
2017 Baytshtok V, Chen J, Glynn SE, Nager AR, Grant RA, Baker TA, Sauer RT. Covalently Linked HslU Hexamers Support a Probabilistic Mechanism that Links ATP Hydrolysis to Protein Unfolding and Translocation. The Journal of Biological Chemistry. PMID 28223361 DOI: 10.1074/Jbc.M116.768978  0.659
2017 Chandra Kotamarthi H, Olivares A, Stein B, Sauer R, Baker T. Single-Molecule Dissection of the Role of Directionality in Protein Degradation by Clp Proteolytic Machines Biophysical Journal. 112: 470a. DOI: 10.1016/J.Bpj.2016.11.2524  0.57
2016 Hall BM, Breidenstein EB, de la Fuente-Núñez C, Reffuveille F, Mawla GD, Hancock RE, Baker TA. Two isoforms of Clp peptidase in Pseudomonas aeruginosa control distinct aspects of cellular physiology. Journal of Bacteriology. PMID 27849175 DOI: 10.1128/Jb.00568-16  0.351
2016 Baytshtok V, Fei X, Grant RA, Baker TA, Sauer RT. A Structurally Dynamic Region of the HslU Intermediate Domain Controls Protein Degradation and ATP Hydrolysis. Structure (London, England : 1993). PMID 27667691 DOI: 10.1016/J.Str.2016.08.012  0.645
2016 Amor AJ, Schmitz KR, Sello JK, Baker TA, Sauer RT. Highly dynamic interactions maintain kinetic stability of the ClpXP protease during the ATP-fueled mechanical cycle. Acs Chemical Biology. PMID 27003103 DOI: 10.1021/Acschembio.6B00083  0.643
2016 Stein BJ, Grant RA, Sauer RT, Baker TA. Structural Basis of an N-Degron Adaptor with More Stringent Specificity. Structure (London, England : 1993). PMID 26805523 DOI: 10.1016/J.Str.2015.12.008  0.606
2016 Yien YY, Nicolas G, van der Vorm L, Gouya L, Begonia H, Kafina M, Deybach J, Baker T, Kardon J, Phillips JD, Puy H, Paw BH. A Dominant Mutation in Mitochondrial Unfoldase CLPX Results in Erythropoietic Protoporphyria Blood. 128: 77-77. DOI: 10.1182/Blood.V128.22.77.77  0.355
2015 Ahn BE, Baker TA. Oxidization without substrate unfolding triggers proteolysis of the peroxide-sensor, PerR. Proceedings of the National Academy of Sciences of the United States of America. PMID 26677871 DOI: 10.1073/Pnas.1522687112  0.405
2015 Olivares AO, Baker TA, Sauer RT. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nature Reviews. Microbiology. PMID 26639779 DOI: 10.1038/Nrmicro.2015.4  0.645
2015 Iosefson O, Olivares AO, Baker TA, Sauer RT. Dissection of Axial-Pore Loop Function during Unfolding and Translocation by a AAA+ Proteolytic Machine. Cell Reports. 12: 1032-41. PMID 26235618 DOI: 10.1016/J.Celrep.2015.07.007  0.646
2015 Kardon JR, Yien YY, Huston NC, Branco DS, Hildick-Smith GJ, Rhee KY, Paw BH, Baker TA. Mitochondrial ClpX Activates a Key Enzyme for Heme Biosynthesis and Erythropoiesis. Cell. 161: 858-67. PMID 25957689 DOI: 10.1016/J.Cell.2015.04.017  0.388
2015 Baytshtok V, Baker TA, Sauer RT. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases. Proceedings of the National Academy of Sciences of the United States of America. 112: 5377-82. PMID 25870262 DOI: 10.1073/Pnas.1505881112  0.671
2015 Stinson BM, Baytshtok V, Schmitz KR, Baker TA, Sauer RT. Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX. Nature Structural & Molecular Biology. 22: 411-6. PMID 25866879 DOI: 10.1038/nsmb.3012  0.586
2015 Ling L, Montaño SP, Sauer RT, Rice PA, Baker TA. Deciphering the Roles of Multicomponent Recognition Signals by the AAA+ Unfoldase ClpX. Journal of Molecular Biology. 427: 2966-82. PMID 25797169 DOI: 10.1016/J.Jmb.2015.03.008  0.676
2015 Iosefson O, Nager AR, Baker TA, Sauer RT. Erratum: Coordinated gripping of substrate by subunits of an AAA+ proteolytic machine. Nature Chemical Biology. 11: 299. PMID 25785430 DOI: 10.1038/Nchembio0415-299A  0.52
2015 de Regt AK, Baker TA, Sauer RT. Steric clashes with bound OMP peptides activate the DegS stress-response protease. Proceedings of the National Academy of Sciences of the United States of America. 112: 3326-31. PMID 25733864 DOI: 10.1073/Pnas.1502372112  0.569
2015 de Regt AK, Kim S, Sohn J, Grant RA, Baker TA, Sauer RT. A conserved activation cluster is required for allosteric communication in HtrA-family proteases. Structure (London, England : 1993). 23: 517-26. PMID 25703375 DOI: 10.1016/J.Str.2015.01.012  0.622
2015 Iosefson O, Nager AR, Baker TA, Sauer RT. Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine. Nature Chemical Biology. 11: 201-6. PMID 25599533 DOI: 10.1038/Nchembio.1732  0.643
2014 Olivares AO, Nager AR, Iosefson O, Sauer RT, Baker TA. Mechanochemical basis of protein degradation by a double-ring AAA+ machine. Nature Structural & Molecular Biology. 21: 871-5. PMID 25195048 DOI: 10.1038/Nsmb.2885  0.653
2014 Rivera-Rivera I, Román-Hernández G, Sauer RT, Baker TA. Remodeling of a delivery complex allows ClpS-mediated degradation of N-degron substrates. Proceedings of the National Academy of Sciences of the United States of America. 111: E3853-9. PMID 25187555 DOI: 10.1073/Pnas.1414933111  0.624
2014 Cordova JC, Olivares AO, Shin Y, Stinson BM, Calmat S, Schmitz KR, Aubin-Tam ME, Baker TA, Lang MJ, Sauer RT. Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine. Cell. 158: 647-58. PMID 25083874 DOI: 10.1016/J.Cell.2014.05.043  0.641
2014 Al-Furoukh N, Kardon JR, Krüger M, Szibor M, Baker TA, Braun T. NOA1, a novel ClpXP substrate, takes an unexpected nuclear detour prior to mitochondrial import. Plos One. 9: e103141. PMID 25072814 DOI: 10.1371/Journal.Pone.0103141  0.371
2014 de Regt AK, Yin Y, Withers TR, Wang X, Baker TA, Sauer RT, Yu HD. Overexpression of CupB5 activates alginate overproduction in Pseudomonas aeruginosa by a novel AlgW-dependent mechanism. Molecular Microbiology. 93: 415-25. PMID 24913916 DOI: 10.1111/Mmi.12665  0.568
2014 Barthelme D, Chen JZ, Grabenstatter J, Baker TA, Sauer RT. Architecture and assembly of the archaeal Cdc48*20S proteasome. Proceedings of the National Academy of Sciences of the United States of America. 111: E1687-94. PMID 24711419 DOI: 10.1073/Pnas.1404823111  0.673
2014 Wohlever ML, Baker TA, Sauer RT. Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity. Molecular Microbiology. 91: 66-78. PMID 24205897 DOI: 10.1111/Mmi.12444  0.659
2014 Sauer RT, Yosefson O, Stinson BM, Nager AR, Glynn SE, Schmitz KR, Olivares AO, Manning HW, Shin Y, Cordova JC, Lang MJ, Baker TA. ClpX, a Stochastic Protein Unfolding and Translocation Machine Biophysical Journal. 106: 444a. DOI: 10.1016/J.Bpj.2013.11.2514  0.657
2014 Olivares AO, Cordvoa JC, Calmat S, Lang MJ, Sauer RT, Baker TA. Mechanical Protein Unfolding and Translocation by AAA+ Proteases Biophysical Journal. 106: 246a. DOI: 10.1016/J.Bpj.2013.11.1443  0.659
2013 Wohlever ML, Baker TA, Sauer RT. A mutation in the N domain of Escherichia coli lon stabilizes dodecamers and selectively alters degradation of model substrates. Journal of Bacteriology. 195: 5622-8. PMID 24123818 DOI: 10.1128/Jb.00886-13  0.641
2013 Vieux EF, Wohlever ML, Chen JZ, Sauer RT, Baker TA. Distinct quaternary structures of the AAA+ Lon protease control substrate degradation. Proceedings of the National Academy of Sciences of the United States of America. 110: E2002-8. PMID 23674680 DOI: 10.1073/Pnas.1307066110  0.672
2013 Stinson BM, Nager AR, Glynn SE, Schmitz KR, Baker TA, Sauer RT. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell. 153: 628-39. PMID 23622246 DOI: 10.1016/J.Cell.2013.03.029  0.607
2013 Wohlever ML, Nager AR, Baker TA, Sauer RT. Engineering fluorescent protein substrates for the AAA+ Lon protease. Protein Engineering, Design & Selection : Peds. 26: 299-305. PMID 23359718 DOI: 10.1093/Protein/Gzs105  0.655
2013 Cordova JC, Shin Y, Calmat S, Schmitz KR, Aubin-Tam ME, Olivares A, Sauer RT, Baker TA, Lang MJ. Optical tweezers for monitoring unfolding by the protease ClpXP Optics Infobase Conference Papers. DOI: 10.1364/Fio.2013.Fth1D.4  0.537
2013 Nager AR, Baker TA, Sauer RT. Corrigendum to “Stepwise Unfolding of a β Barrel Protein by the AAA + ClpXP Protease” [J. Mol. Biol. 413/1 (2011) 4–16] Journal of Molecular Biology. 425: 1241-1243. DOI: 10.1016/J.Jmb.2013.02.001  0.517
2013 Vieux EF, Wohlever ML, Chen J, Sauer RT, Baker TA. Distinct Quaternary Structures of Lon Protease Control Substrate Degradation Biophysical Journal. 104: 554a. DOI: 10.1016/J.Bpj.2012.11.3071  0.664
2012 Glynn SE, Nager AR, Baker TA, Sauer RT. Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine. Nature Structural & Molecular Biology. 19: 616-22. PMID 22562135 DOI: 10.1038/Nsmb.2288  0.613
2012 Landgraf D, Okumus B, Chien P, Baker TA, Paulsson J. Segregation of molecules at cell division reveals native protein localization. Nature Methods. 9: 480-2. PMID 22484850 DOI: 10.1038/Nmeth.1955  0.39
2012 Peterson CN, Levchenko I, Rabinowitz JD, Baker TA, Silhavy TJ. RpoS proteolysis is controlled directly by ATP levels in Escherichia coli. Genes & Development. 26: 548-53. PMID 22426532 DOI: 10.1101/Gad.183517.111  0.44
2012 Sundar S, Baker TA, Sauer RT. The I domain of the AAA+ HslUV protease coordinates substrate binding, ATP hydrolysis, and protein degradation. Protein Science : a Publication of the Protein Society. 21: 188-98. PMID 22102327 DOI: 10.1002/Pro.2001  0.675
2012 Baker TA, Sauer RT. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochimica Et Biophysica Acta. 1823: 15-28. PMID 21736903 DOI: 10.1016/J.Bbamcr.2011.06.007  0.68
2012 Aubin-Tam M, Olivares AO, Carlos Cordova J, Calmat S, Sauer RT, Baker TA, Lang MJ. Single-Molecule Protein Unfolding and Translocation by the AAA+ Protease, ClpXP Biophysical Journal. 102: 610a. DOI: 10.1016/J.Bpj.2011.11.3328  0.65
2012 Stinson BM, Glynn SE, Nager AR, Baker TA, Sauer RT. Eliminating ATP Binding in Specific ClpX Subunits Yields Functional ATP-Fueled Protein-Unfolding Machines Biophysical Journal. 102: 21a. DOI: 10.1016/J.Bpj.2011.11.138  0.655
2011 Davis JH, Baker TA, Sauer RT. Small-molecule control of protein degradation using split adaptors. Acs Chemical Biology. 6: 1205-13. PMID 21866931 DOI: 10.1021/Cb2001389  0.657
2011 Abel S, Chien P, Wassmann P, Schirmer T, Kaever V, Laub MT, Baker TA, Jenal U. Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks. Molecular Cell. 43: 550-60. PMID 21855795 DOI: 10.1016/J.Molcel.2011.07.018  0.347
2011 Nager AR, Baker TA, Sauer RT. Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease. Journal of Molecular Biology. 413: 4-16. PMID 21821046 DOI: 10.1016/J.Jmb.2011.07.041  0.644
2011 Román-Hernández G, Hou JY, Grant RA, Sauer RT, Baker TA. The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease. Molecular Cell. 43: 217-28. PMID 21777811 DOI: 10.1016/J.Molcel.2011.06.009  0.612
2011 Aubin-Tam ME, Olivares AO, Sauer RT, Baker TA, Lang MJ. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell. 145: 257-67. PMID 21496645 DOI: 10.1016/J.Cell.2011.03.036  0.665
2011 Sauer RT, Baker TA. AAA+ proteases: ATP-fueled machines of protein destruction. Annual Review of Biochemistry. 80: 587-612. PMID 21469952 DOI: 10.1146/Annurev-Biochem-060408-172623  0.666
2010 Sundar S, McGinness KE, Baker TA, Sauer RT. Multiple sequence signals direct recognition and degradation of protein substrates by the AAA+ protease HslUV. Journal of Molecular Biology. 403: 420-9. PMID 20837023 DOI: 10.1016/J.Jmb.2010.09.008  0.691
2010 Lee ME, Baker TA, Sauer RT. Control of substrate gating and translocation into ClpP by channel residues and ClpX binding. Journal of Molecular Biology. 399: 707-18. PMID 20416323 DOI: 10.1016/J.Jmb.2010.04.027  0.587
2010 Bissonnette SA, Rivera-Rivera I, Sauer RT, Baker TA. The IbpA and IbpB small heat-shock proteins are substrates of the AAA+ Lon protease. Molecular Microbiology. 75: 1539-49. PMID 20158612 DOI: 10.1111/J.1365-2958.2010.07070.X  0.642
2010 Abdelhakim AH, Sauer RT, Baker TA. The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome. Proceedings of the National Academy of Sciences of the United States of America. 107: 2437-42. PMID 20133746 DOI: 10.1073/Pnas.0910905106  0.597
2010 Chowdhury T, Chien P, Ebrahim S, Sauer RT, Baker TA. Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species. Protein Science : a Publication of the Protein Society. 19: 242-54. PMID 20014030 DOI: 10.1002/Pro.306  0.629
2010 Shin Y, Davis JH, Brau RR, Martin A, Baker T, Sauer RT, Lang MJ. Clpxp Degradation of Proteins Probed By Single-Molecule Fluorescence Biophysical Journal. 98: 34a. DOI: 10.1016/J.Bpj.2009.12.200  0.648
2009 Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell. 139: 744-56. PMID 19914167 DOI: 10.1016/J.Cell.2009.09.034  0.621
2009 Shin Y, Davis JH, Brau RR, Martin A, Kenniston JA, Baker TA, Sauer RT, Lang MJ. Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease. Proceedings of the National Academy of Sciences of the United States of America. 106: 19340-5. PMID 19892734 DOI: 10.1073/Pnas.0910484106  0.671
2009 Davis JH, Baker TA, Sauer RT. Engineering synthetic adaptors and substrates for controlled ClpXP degradation. The Journal of Biological Chemistry. 284: 21848-55. PMID 19549779 DOI: 10.1074/Jbc.M109.017624  0.642
2009 Barkow SR, Levchenko I, Baker TA, Sauer RT. Polypeptide translocation by the AAA+ ClpXP protease machine. Chemistry & Biology. 16: 605-12. PMID 19549599 DOI: 10.1016/J.Chembiol.2009.05.007  0.621
2009 Román-Hernández G, Grant RA, Sauer RT, Baker TA. Molecular basis of substrate selection by the N-end rule adaptor protein ClpS. Proceedings of the National Academy of Sciences of the United States of America. 106: 8888-93. PMID 19451643 DOI: 10.1073/Pnas.0903614106  0.58
2009 Pruteanu M, Baker TA. Controlled degradation by ClpXP protease tunes the levels of the excision repair protein UvrA to the extent of DNA damage. Molecular Microbiology. 71: 912-24. PMID 19183285 DOI: 10.1111/J.1365-2958.2008.06574.X  0.407
2009 Chowdhury T, Chien P, Sauer RT, Baker TA. Elucidating The Specificity Determinants Responsible For ClpX-Adaptor Interaction Biophysical Journal. 96: 82a. DOI: 10.1016/J.Bpj.2008.12.326  0.64
2009 Meyer AS, Flynn JM, Baker TA. ClpXP Degradation of the DNA-Protection Protein Dps Requires Auto-Tethering to the Enzyme Biophysical Journal. 96: 434a. DOI: 10.1016/J.Bpj.2008.12.2225  0.505
2008 Wang KH, Roman-Hernandez G, Grant RA, Sauer RT, Baker TA. The molecular basis of N-end rule recognition. Molecular Cell. 32: 406-14. PMID 18995838 DOI: 10.1016/J.Molcel.2008.08.032  0.574
2008 Martin A, Baker TA, Sauer RT. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nature Structural & Molecular Biology. 15: 1147-51. PMID 18931677 DOI: 10.1038/Nsmb.1503  0.652
2008 Schweidenback CT, Baker TA. Dissecting the roles of MuB in Mu transposition: ATP regulation of DNA binding is not essential for target delivery. Proceedings of the National Academy of Sciences of the United States of America. 105: 12101-7. PMID 18719126 DOI: 10.1073/Pnas.0805868105  0.417
2008 Moore SD, Baker TA, Sauer RT. Forced extraction of targeted components from complex macromolecular assemblies. Proceedings of the National Academy of Sciences of the United States of America. 105: 11685-90. PMID 18695246 DOI: 10.1073/Pnas.0805633105  0.582
2008 Yakamavich JA, Baker TA, Sauer RT. Asymmetric nucleotide transactions of the HslUV protease. Journal of Molecular Biology. 380: 946-57. PMID 18582897 DOI: 10.1016/J.Jmb.2008.05.070  0.637
2008 Wang KH, Oakes ES, Sauer RT, Baker TA. Tuning the strength of a bacterial N-end rule degradation signal. The Journal of Biological Chemistry. 283: 24600-7. PMID 18550545 DOI: 10.1074/Jbc.M802213200  0.598
2008 Abdelhakim AH, Oakes EC, Sauer RT, Baker TA. Unique contacts direct high-priority recognition of the tetrameric Mu transposase-DNA complex by the AAA+ unfoldase ClpX. Molecular Cell. 30: 39-50. PMID 18406325 DOI: 10.1016/J.Molcel.2008.02.013  0.623
2008 Martin A, Baker TA, Sauer RT. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Molecular Cell. 29: 441-50. PMID 18313382 DOI: 10.1016/J.Molcel.2008.02.002  0.627
2008 Hou JY, Sauer RT, Baker TA. Distinct structural elements of the adaptor ClpS are required for regulating degradation by ClpAP. Nature Structural & Molecular Biology. 15: 288-94. PMID 18297088 DOI: 10.1038/Nsmb.1392  0.665
2008 Martin A, Baker TA, Sauer RT. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes. Nature Structural & Molecular Biology. 15: 139-45. PMID 18223658 DOI: 10.1038/Nsmb.1380  0.679
2007 Lemberg KM, Schweidenback CT, Baker TA. The dynamic Mu transpososome: MuB activation prevents disintegration. Journal of Molecular Biology. 374: 1158-71. PMID 17988683 DOI: 10.1016/J.Jmb.2007.09.079  0.371
2007 Chien P, Grant RA, Sauer RT, Baker TA. Structure and substrate specificity of an SspB ortholog: design implications for AAA+ adaptors. Structure (London, England : 1993). 15: 1296-305. PMID 17937918 DOI: 10.1016/J.Str.2007.08.008  0.646
2007 Martin A, Baker TA, Sauer RT. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease. Molecular Cell. 27: 41-52. PMID 17612489 DOI: 10.1016/J.Molcel.2007.05.024  0.622
2007 Chien P, Perchuk BS, Laub MT, Sauer RT, Baker TA. Direct and adaptor-mediated substrate recognition by an essential AAA+ protease. Proceedings of the National Academy of Sciences of the United States of America. 104: 6590-5. PMID 17420450 DOI: 10.1073/Pnas.0701776104  0.605
2007 Wang KH, Sauer RT, Baker TA. ClpS modulates but is not essential for bacterial N-end rule degradation. Genes & Development. 21: 403-8. PMID 17322400 DOI: 10.1101/Gad.1511907  0.585
2007 McGinness KE, Bolon DN, Kaganovich M, Baker TA, Sauer RT. Altered tethering of the SspB adaptor to the ClpXP protease causes changes in substrate delivery. The Journal of Biological Chemistry. 282: 11465-73. PMID 17317664 DOI: 10.1074/Jbc.M610671200  0.642
2007 Pruteanu M, Neher SB, Baker TA. Ligand-controlled proteolysis of the Escherichia coli transcriptional regulator ZntR. Journal of Bacteriology. 189: 3017-25. PMID 17220226 DOI: 10.1128/Jb.01531-06  0.41
2007 Farrell CM, Baker TA, Sauer RT. Altered specificity of a AAA+ protease. Molecular Cell. 25: 161-6. PMID 17218279 DOI: 10.1016/J.Molcel.2006.11.018  0.683
2007 Chaba R, Grigorova IL, Flynn JM, Baker TA, Gross CA. Design principles of the proteolytic cascade governing the sigmaE-mediated envelope stress response in Escherichia coli: keys to graded, buffered, and rapid signal transduction. Genes & Development. 21: 124-36. PMID 17210793 DOI: 10.1101/Gad.1496707  0.339
2006 Baker TA, Sauer RT. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends in Biochemical Sciences. 31: 647-53. PMID 17074491 DOI: 10.1016/J.Tibs.2006.10.006  0.661
2006 McGinness KE, Baker TA, Sauer RT. Engineering controllable protein degradation. Molecular Cell. 22: 701-7. PMID 16762842 DOI: 10.1016/J.Molcel.2006.04.027  0.617
2006 Neher SB, Villén J, Oakes EC, Bakalarski CE, Sauer RT, Gygi SP, Baker TA. Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon. Molecular Cell. 22: 193-204. PMID 16630889 DOI: 10.1016/J.Molcel.2006.03.007  0.624
2005 Martin A, Baker TA, Sauer RT. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. Nature. 437: 1115-20. PMID 16237435 DOI: 10.1038/Nature04031  0.638
2005 Bolon DN, Grant RA, Baker TA, Sauer RT. Specificity versus stability in computational protein design. Proceedings of the National Academy of Sciences of the United States of America. 102: 12724-9. PMID 16129838 DOI: 10.1073/Pnas.0506124102  0.54
2005 Burton BM, Baker TA. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Protein Science : a Publication of the Protein Society. 14: 1945-54. PMID 16046622 DOI: 10.1110/Ps.051417505  0.685
2005 Hersch GL, Burton RE, Bolon DN, Baker TA, Sauer RT. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Cell. 121: 1017-27. PMID 15989952 DOI: 10.1016/J.Cell.2005.05.024  0.656
2005 Levchenko I, Grant RA, Flynn JM, Sauer RT, Baker TA. Versatile modes of peptide recognition by the AAA+ adaptor protein SspB. Nature Structural & Molecular Biology. 12: 520-5. PMID 15880122 DOI: 10.1038/Nsmb934  0.573
2005 Burton RE, Baker TA, Sauer RT. Nucleotide-dependent substrate recognition by the AAA+ HslUV protease. Nature Structural & Molecular Biology. 12: 245-51. PMID 15696175 DOI: 10.1038/Nsmb898  0.684
2005 Kenniston JA, Baker TA, Sauer RT. Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing. Proceedings of the National Academy of Sciences of the United States of America. 102: 1390-5. PMID 15671177 DOI: 10.1073/Pnas.0409634102  0.683
2004 Bolon DN, Grant RA, Baker TA, Sauer RT. Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease. Molecular Cell. 16: 343-50. PMID 15525508 DOI: 10.1016/J.Molcel.2004.10.001  0.648
2004 Sauer RT, Bolon DN, Burton BM, Burton RE, Flynn JM, Grant RA, Hersch GL, Joshi SA, Kenniston JA, Levchenko I, Neher SB, Oakes ES, Siddiqui SM, Wah DA, Baker TA. Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell. 119: 9-18. PMID 15454077 DOI: 10.1016/J.Cell.2004.09.020  0.724
2004 Flynn JM, Levchenko I, Sauer RT, Baker TA. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes & Development. 18: 2292-301. PMID 15371343 DOI: 10.1101/Gad.1240104  0.626
2004 Hersch GL, Baker TA, Sauer RT. SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags. Proceedings of the National Academy of Sciences of the United States of America. 101: 12136-41. PMID 15297609 DOI: 10.1073/Pnas.0404733101  0.63
2004 Joshi SA, Hersch GL, Baker TA, Sauer RT. Communication between ClpX and ClpP during substrate processing and degradation. Nature Structural & Molecular Biology. 11: 404-11. PMID 15064753 DOI: 10.1038/Nsmb752  0.659
2004 Kenniston JA, Burton RE, Siddiqui SM, Baker TA, Sauer RT. Effects of local protein stability and the geometric position of the substrate degradation tag on the efficiency of ClpXP denaturation and degradation. Journal of Structural Biology. 146: 130-40. PMID 15037244 DOI: 10.1016/J.Jsb.2003.10.023  0.616
2004 Siddiqui SM, Sauer RT, Baker TA. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes & Development. 18: 369-74. PMID 15004005 DOI: 10.1101/Gad.1170304  0.635
2004 Bolon DN, Wah DA, Hersch GL, Baker TA, Sauer RT. Bivalent tethering of SspB to ClpXP is required for efficient substrate delivery: a protein-design study. Molecular Cell. 13: 443-9. PMID 14967151 DOI: 10.1016/S1097-2765(04)00027-9  0.64
2004 Williams TL, Baker TA. Reorganization of the Mu transpososome active sites during a cooperative transition between DNA cleavage and joining. The Journal of Biological Chemistry. 279: 5135-45. PMID 14585843 DOI: 10.1074/Jbc.M308156200  0.323
2003 Spector S, Flynn JM, Tidor B, Baker TA, Sauer RT. Expression of N-formylated proteins in Escherichia coli. Protein Expression and Purification. 32: 317-22. PMID 14965779 DOI: 10.1016/J.Pep.2003.08.004  0.602
2003 Goldhaber-Gordon I, Early MH, Baker TA. MuA transposase separates DNA sequence recognition from catalysis. Biochemistry. 42: 14633-42. PMID 14661976 DOI: 10.1021/Bi035360O  0.36
2003 Neher SB, Sauer RT, Baker TA. Distinct peptide signals in the UmuD and UmuD' subunits of UmuD/D' mediate tethering and substrate processing by the ClpXP protease. Proceedings of the National Academy of Sciences of the United States of America. 100: 13219-24. PMID 14595014 DOI: 10.1073/Pnas.2235804100  0.675
2003 Levchenko I, Grant RA, Wah DA, Sauer RT, Baker TA. Structure of a delivery protein for an AAA+ protease in complex with a peptide degradation tag. Molecular Cell. 12: 365-72. PMID 14536076 DOI: 10.1016/J.Molcel.2003.08.014  0.657
2003 Wah DA, Levchenko I, Rieckhof GE, Bolon DN, Baker TA, Sauer RT. Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Molecular Cell. 12: 355-63. PMID 14536075 DOI: 10.1016/S1097-2765(03)00272-7  0.64
2003 Kenniston JA, Baker TA, Fernandez JM, Sauer RT. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell. 114: 511-20. PMID 12941278 DOI: 10.1016/S0092-8674(03)00612-3  0.672
2003 Goldhaber-Gordon I, Early MH, Baker TA. The terminal nucleotide of the Mu genome controls catalysis of DNA strand transfer. Proceedings of the National Academy of Sciences of the United States of America. 100: 7509-14. PMID 12796508 DOI: 10.1073/Pnas.0832468100  0.338
2003 Coros CJ, Sekino Y, Baker TA, Chaconas G. Effect of mutations in the C-terminal domain of Mu B on DNA binding and interactions with Mu A transposase. The Journal of Biological Chemistry. 278: 31210-7. PMID 12791691 DOI: 10.1074/Jbc.M303693200  0.452
2003 Burton BM, Baker TA. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex. Chemistry & Biology. 10: 463-72. PMID 12770828 DOI: 10.1016/S1074-5521(03)00102-9  0.687
2003 Neher SB, Flynn JM, Sauer RT, Baker TA. Latent ClpX-recognition signals ensure LexA destruction after DNA damage. Genes & Development. 17: 1084-9. PMID 12730132 DOI: 10.1101/Gad.1078003  0.597
2003 Burton RE, Baker TA, Sauer RT. Energy-dependent degradation: Linkage between ClpX-catalyzed nucleotide hydrolysis and protein-substrate processing. Protein Science : a Publication of the Protein Society. 12: 893-902. PMID 12717012 DOI: 10.1110/Ps.0237603  0.615
2003 Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Molecular Cell. 11: 671-83. PMID 12667450 DOI: 10.1016/S1097-2765(03)00060-1  0.664
2003 Joshi SA, Baker TA, Sauer RT. C-terminal domain mutations in ClpX uncouple substrate binding from an engagement step required for unfolding. Molecular Microbiology. 48: 67-76. PMID 12657045 DOI: 10.1046/J.1365-2958.2003.03424.X  0.655
2003 Sokolsky TD, Baker TA. DNA gyrase requirements distinguish the alternate pathways of Mu transposition. Molecular Microbiology. 47: 397-409. PMID 12519191 DOI: 10.1046/J.1365-2958.2003.03296.X  0.343
2002 Wah DA, Levchenko I, Baker TA, Sauer RT. Characterization of a specificity factor for an AAA+ ATPase: assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer. Chemistry & Biology. 9: 1237-45. PMID 12445774 DOI: 10.1016/S1074-5521(02)00268-5  0.681
2002 Goldhaber-Gordon I, Early MH, Gray MK, Baker TA. Sequence and positional requirements for DNA sites in a mu transpososome. The Journal of Biological Chemistry. 277: 7703-12. PMID 11756424 DOI: 10.1074/Jbc.M110342200  0.33
2002 Goldhaber-Gordon I, Williams TL, Baker TA. DNA recognition sites activate MuA transposase to perform transposition of non-Mu DNA. The Journal of Biological Chemistry. 277: 7694-702. PMID 11756423 DOI: 10.1074/Jbc.M110341200  0.34
2002 Sauer R, Burton R, Kenniston J, Joshi S, Wah D, Levchenko I, Grant R, Flynn J, Neher S, Baker T. ATP-dependent protein degradation and unfolding by ClpXP Gbm Annual Fall Meeting Halle 2002. 2002. DOI: 10.1240/sav_gbm_2002_h_000261  0.596
2002 Wah DA, Levchenko I, Baker TA, Sauer RT. Characterization of a specificity factor for an AAA+ ATPase: Assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer Chemistry and Biology. 9: 1237-1245. DOI: 10.1016/S1074-5521(02)00268-5  0.541
2001 Rice PA, Baker TA. Comparative architecture of transposase and integrase complexes. Nature Structural Biology. 8: 302-7. PMID 11774877 DOI: 10.1038/86166  0.364
2001 Burton BM, Williams TL, Baker TA. ClpX-mediated remodeling of mu transpososomes: selective unfolding of subunits destabilizes the entire complex. Molecular Cell. 8: 449-54. PMID 11545746 DOI: 10.1016/S1097-2765(01)00307-0  0.685
2001 Flynn JM, Levchenko I, Seidel M, Wickner SH, Sauer RT, Baker TA. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis Proceedings of the National Academy of Sciences of the United States of America. 98: 10584-10589. PMID 11535833 DOI: 10.1073/Pnas.191375298  0.639
2001 Burton RE, Siddiqui SM, Kim YI, Baker TA, Sauer RT. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine Embo Journal. 20: 3092-3100. PMID 11406586 DOI: 10.1093/Emboj/20.12.3092  0.688
2001 Lo JH, Baker TA, Sauer RT. Characterization of the N-terminal repeat domain of Escherichia coli ClpA-A class I Clp/HSP100 ATPase. Protein Science : a Publication of the Protein Society. 10: 551-9. PMID 11344323 DOI: 10.1110/Ps.41401  0.631
2001 Roldan LAS, Baker TA. Differential role of the Mu B protein in phage Mu integration vs. replication: Mechanistic insights into two transposition pathways Molecular Microbiology. 40: 141-155. PMID 11298282 DOI: 10.1046/J.1365-2958.2001.02364.X  0.386
2001 Kim YI, Levchenko I, Fraczkowska K, Woodruff RV, Sauer RT, Baker TA. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nature Structural Biology. 8: 230-3. PMID 11224567 DOI: 10.1038/84967  0.619
2000 Levchenko I, Seidel M, Sauer RT, Baker TA. A specificity-enhancing factor for the clpXP degradation machine Science. 289: 2354-2356. PMID 11009422 DOI: 10.1126/Science.289.5488.2354  0.644
2000 Kim YI, Burton RE, Burton BM, Sauer RT, Baker TA. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Molecular Cell. 5: 639-48. PMID 10882100 DOI: 10.1016/S1097-2765(00)80243-9  0.754
1999 Williams TL, Jackson EL, Carritte A, Baker TA. Organization and dynamics of the Mu transpososome: Recombination by communication between two active sites Genes and Development. 13: 2725-2737. PMID 10541558 DOI: 10.1101/Gad.13.20.2725  0.352
1999 Baker TA. Protein unfolding. Trapped in the act. Nature. 401: 29-30. PMID 10485699 DOI: 10.1038/43341  0.428
1999 Smith CK, Baker TA, Sauer RT. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proceedings of the National Academy of Sciences of the United States of America. 96: 6678-82. PMID 10359771 DOI: 10.1073/Pnas.96.12.6678  0.646
1998 Krementsova E, Giffin MJ, Pincus D, Baker TA. Mutational analysis of the Mu transposase. Contributions of two distinct regions of domain II to recombination. The Journal of Biological Chemistry. 273: 31358-65. PMID 9813045 DOI: 10.1074/Jbc.273.47.31358  0.416
1998 Yamauchi M, Baker TA. An ATP-ADP switch in MuB controls progression of the Mu transposition pathway Embo Journal. 17: 5509-5518. PMID 9736628 DOI: 10.1093/Emboj/17.18.5509  0.444
1997 Levchenko I, Smith CK, Walsh NP, Sauer RT, Baker TA. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits. Cell. 91: 939-47. PMID 9428517 DOI: 10.1016/S0092-8674(00)80485-7  0.627
1997 Levchenko I, Yamauchi M, Baker TA. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes & Development. 11: 1561-72. PMID 9203582 DOI: 10.1101/Gad.11.12.1561  0.489
1996 Aldaz H, Schuster E, Baker TA. The interwoven architecture of the Mu transposase couples DNA synapsis to catalysis. Cell. 85: 257-69. PMID 8612278 DOI: 10.1016/S0092-8674(00)81102-2  0.394
1995 Mizuuchi M, Baker TA, Mizuuchi K. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds. Cell. 83: 375-85. PMID 8521467 DOI: 10.1016/0092-8674(95)90115-9  0.58
1995 Levchenko I, Luo L, Baker TA. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes & Development. 9: 2399-408. PMID 7557391 DOI: 10.1101/Gad.9.19.2399  0.489
1995 Baker TA. Bacteriophage Mu: a transposing phage that integrates like retroviruses Seminars in Virology. 6: 53-63. DOI: 10.1016/S1044-5773(05)80009-5  0.366
1994 Baker TA. Protein-DNA assemblies controlling lytic development of bacteriophage Mu. Current Opinion in Genetics & Development. 3: 708-12. PMID 8274852 DOI: 10.1016/S0959-437X(05)80087-5  0.414
1994 Baker TA, Kremenstova E, Luo L. Complete transposition requires four active monomers in the mu transposase tetramer. Genes & Development. 8: 2416-28. PMID 7958906 DOI: 10.1101/Gad.8.20.2416  0.427
1994 Baker TA, Luo L. Identification of residues in the Mu transposase essential for catalysis. Proceedings of the National Academy of Sciences of the United States of America. 91: 6654-8. PMID 7912831 DOI: 10.1073/Pnas.91.14.6654  0.344
1993 Baker TA, Mizuuchi M, Savilahti H, Mizuuchi K. Division of labor among monomers within the Mu transposase tetramer. Cell. 74: 723-33. PMID 8395353 DOI: 10.1016/0092-8674(93)90519-V  0.583
1992 Baker TA, Wickner SH. Genetics and enzymology of DNA replication in Escherichia coli Annual Review of Genetics. 26: 447-477. PMID 1482121 DOI: 10.1146/Annurev.Ge.26.120192.002311  0.31
1992 Baker TA, Mizuuchi K. DNA-promoted assembly of the active tetramer of the Mu transposase. Genes & Development. 6: 2221-32. PMID 1330829 DOI: 10.1101/Gad.6.11.2221  0.588
1992 Mizuuchi M, Baker TA, Mizuuchi K. Assembly of the active form of the transposase-Mu DNA complex: a critical control point in Mu transposition. Cell. 70: 303-11. PMID 1322248 DOI: 10.1016/0092-8674(92)90104-K  0.566
1991 Mizuuchi M, Baker TA, Mizuuchi K. DNase protection analysis of the stable synaptic complexes involved in Mu transposition. Proceedings of the National Academy of Sciences of the United States of America. 88: 9031-5. PMID 1656459 DOI: 10.1073/Pnas.88.20.9031  0.575
1991 Baker TA, Mizuuchi M, Mizuuchi K. MuB protein allosterically activates strand transfer by the transposase of phage Mu. Cell. 65: 1003-13. PMID 1646076 DOI: 10.1016/0092-8674(91)90552-A  0.586
1990 Skarstad K, Baker TA, Kornberg A. Strand separation required for initiation of replication at the chromosomal origin of E.coli is facilitated by a distant RNA--DNA hybrid. The Embo Journal. 9: 2341-8. PMID 1694129 DOI: 10.1002/J.1460-2075.1990.Tb07406.X  0.506
1988 Baker TA, Kornberg A. Transcriptional activation of initiation of replication from the E. coli chromosomal origin: an RNA-DNA hybrid near oriC. Cell. 55: 113-23. PMID 2458841 DOI: 10.1016/0092-8674(88)90014-1  0.455
1987 Funnell BE, Baker TA, Kornberg A. In vitro assembly of a prepriming complex at the origin of the Escherichia coli chromosome. The Journal of Biological Chemistry. 262: 10327-34. PMID 3038874  0.561
1987 Baker TA, Funnell BE, Kornberg A. Helicase action of dnaB protein during replication from the Escherichia coli chromosomal origin in vitro. The Journal of Biological Chemistry. 262: 6877-85. PMID 3032979  0.503
1986 Funnell BE, Baker TA, Kornberg A. Complete enzymatic replication of plasmids containing the origin of the Escherichia coli chromosome. The Journal of Biological Chemistry. 261: 5616-24. PMID 3514619  0.514
1986 Baker TA, Sekimizu K, Funnell BE, Kornberg A. Extensive unwinding of the plasmid template during staged enzymatic initiation of DNA replication from the origin of the Escherichia coli chromosome. Cell. 45: 53-64. PMID 3006926 DOI: 10.1016/0092-8674(86)90537-4  0.639
1985 Ogawa T, Baker TA, van der Ende A, Kornberg A. Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: contributions of RNA polymerase and primase. Proceedings of the National Academy of Sciences of the United States of America. 82: 3562-6. PMID 2987933  0.473
1985 van der Ende A, Baker TA, Ogawa T, Kornberg A. Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: primase as the sole priming enzyme. Proceedings of the National Academy of Sciences of the United States of America. 82: 3954-8. PMID 2408271  0.551
Show low-probability matches.