Wenliang Li, Ph.D. - Publications

Affiliations: 
2004 Case Western Reserve University School of Medicine, Cleveland, OH, United States 
Area:
Genetics, Molecular Biology

32 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Li W, Zheng D, Zhang Y, Yang S, Su N, Bakhoum M, Zhang G, Naderinezhad S, Mao Z, Wang Z, Zhou T. Androgen deprivation induces neuroendocrine phenotypes in prostate cancer cells through CREB1/EZH2-mediated downregulation of REST. Research Square. PMID 37886478 DOI: 10.21203/rs.3.rs-3270539/v1  0.35
2023 Naderinezhad S, Zhang G, Wang Z, Zheng D, Hulsurkar M, Bakhoum M, Su N, Yang H, Shen T, Li W. A novel GRK3-HDAC2 regulatory pathway is a key direct link between neuroendocrine differentiation and angiogenesis in prostate cancer progression. Cancer Letters. 571: 216333. PMID 37543278 DOI: 10.1016/j.canlet.2023.216333  0.335
2021 Wang Z, Hulsurkar M, Zhuo L, Xu J, Yang H, Naderinezhad S, Wang L, Zhang G, Ai N, Li L, Chang JT, Zhang S, Fazli L, Creighton CJ, Bai F, ... ... Li W, et al. CKB inhibits epithelial-mesenchymal transition and prostate cancer progression by sequestering and inhibiting AKT activation. Neoplasia (New York, N.Y.). 23: 1147-1165. PMID 34706306 DOI: 10.1016/j.neo.2021.09.005  0.398
2019 Wang Z, Zhao Y, An Z, Li W. Molecular Links Between Angiogenesis and Neuroendocrine Phenotypes in Prostate Cancer Progression. Frontiers in Oncology. 9: 1491. PMID 32039001 DOI: 10.3389/Fonc.2019.01491  0.423
2019 Zhang Y, Zheng D, Zhou T, Hulsurkar M, Ittmann M, Shao L, Gleave M, Li W. Abstract 186: Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers Cancer Research. DOI: 10.1158/1538-7445.Sabcs18-186  0.384
2018 Zhang Y, Zheng D, Zhou T, Song H, Hulsurkar M, Su N, Liu Y, Wang Z, Shao L, Ittmann M, Gleave M, Han H, Xu F, Liao W, Wang H, ... Li W, et al. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nature Communications. 9: 4080. PMID 30287808 DOI: 10.1038/S41467-018-06177-2  0.424
2018 Zhao Y, Li W. Beta-adrenergic signaling on neuroendocrine differentiation, angiogenesis, and metastasis in prostate cancer progression. Asian Journal of Andrology. PMID 29848834 DOI: 10.4103/Aja.Aja_32_18  0.385
2018 Li L, Su N, Zhou T, Zheng D, Wang Z, Chen H, Yuan S, Li W. Mixed lineage kinase ZAK promotes epithelial-mesenchymal transition in cancer progression. Cell Death & Disease. 9: 143. PMID 29396440 DOI: 10.1038/S41419-017-0161-X  0.467
2017 Zheng D, Hulsurkar M, Sang M, Zhang S, Xu J, Gleave M, Ittmann M, Li W. Abstract 1577: GRK3 is a direct target of ADT-induced CREB1 activation and it promotes neuroendocrine differentiation of prostate cancer cells Cancer Research. 77: 1577-1577. DOI: 10.1158/1538-7445.Am2017-1577  0.439
2016 Hulsurkar M, Li Z, Zhang Y, Li X, Zheng D, Li W. Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1. Oncogene. PMID 27641328 DOI: 10.1038/Onc.2016.319  0.347
2016 Sang M, Hulsurkar M, Zhang X, Song H, Zheng D, Zhang Y, Li M, Xu J, Zhang S, Ittmann M, Li W. GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells. Oncotarget. PMID 27191986 DOI: 10.18632/Oncotarget.9359  0.443
2016 Tseng H, Gage JA, Desai PK, Brobey R, Skinner S, Dehghani M, Rosenblatt KP, Li W, Amato RJ, Souza GR. Abstract 4251: Development of spheroids derived from tumor biopsies and patient-derived xenografts using magnetic 3D bioprinting Cancer Research. 76: 4251-4251. DOI: 10.1158/1538-7445.Am2016-4251  0.36
2015 Li L, Li W. Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacology & Therapeutics. 150: 33-46. PMID 25595324 DOI: 10.1016/J.Pharmthera.2015.01.004  0.392
2015 Hulsurkar MM, Sang M, Song H, Li W. Abstract 4181: Chronic stress and beta adrenergic signaling promote angiogenesis and prostate cancer progression through suppressing the expression of Thrombospondin 1 Cancer Research. 75: 4181-4181. DOI: 10.1158/1538-7445.Am2015-4181  0.393
2015 Li L, Chang J, Du G, Amato R, Li W. Abstract 1433: CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression Cancer Research. 75: 1433-1433. DOI: 10.1158/1538-7445.Am2015-1433  0.44
2014 Li L, Liu C, Amato RJ, Chang JT, Du G, Li W. CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression. Oncotarget. 5: 10840-53. PMID 25333262 DOI: 10.18632/Oncotarget.2535  0.439
2014 Li W, Ai N, Wang S, Bhattacharya N, Vrbanac V, Collins M, Signoretti S, Hu Y, Boyce FM, Gravdal K, Halvorsen OJ, Nalwoga H, Akslen LA, Harlow E, Watnick RS. GRK3 is essential for metastatic cells and promotes prostate tumor progression. Proceedings of the National Academy of Sciences of the United States of America. 111: 1521-6. PMID 24434559 DOI: 10.1073/Pnas.1320638111  0.479
2014 Ai N, Hulsurkar M, Akslen L, Watnick R, Harlow E, Li W. Abstract LB-189: GRK3 is essential for metastatic cells and promotes prostate cancer progression Cancer Research. 74. DOI: 10.1158/1538-7445.Am2014-Lb-189  0.495
2013 Li L, Ai N, Hulsurkar M, Li W. Abstract A57: Characterization of novel regulators of epithelial-mesenchymal transition in human cancer cells Cancer Research. 73. DOI: 10.1158/1538-7445.Tim2013-A57  0.474
2013 Li L, Lu E, Chang J, Li W. Abstract A160: Characterization of novel regulators for epithelial-mesenchymal transition. Molecular Cancer Therapeutics. 12. DOI: 10.1158/1535-7163.Targ-13-A160  0.455
2012 Ai N, Harlow E, Li W. Abstract LB-90: Essential kinases for human metastatic cells pertaining to c-Met signaling Cancer Research. 72. DOI: 10.1158/1538-7445.Am2012-Lb-90  0.439
2010 Baldwin A, Grueneberg DA, Hellner K, Sawyer J, Grace M, Li W, Harlow E, Munger K. Kinase requirements in human cells: V. Synthetic lethal interactions between p53 and the protein kinases SGK2 and PAK3. Proceedings of the National Academy of Sciences of the United States of America. 107: 12463-8. PMID 20616055 DOI: 10.1073/Pnas.1007462107  0.378
2009 Li W, Bhattacharya N, Boyce FM, Gupta P, Watnick RS, Harlow EE. Abstract A200: Differential kinase requirements of human cell lines pertaining to metastasis and c‐Met signaling Molecular Cancer Therapeutics. 8. DOI: 10.1158/1535-7163.Targ-09-A200  0.475
2008 Baldwin A, Li W, Grace M, Pearlberg J, Harlow E, Münger K, Grueneberg DA. Kinase requirements in human cells: II. Genetic interaction screens identify kinase requirements following HPV16 E7 expression in cancer cells. Proceedings of the National Academy of Sciences of the United States of America. 105: 16478-83. PMID 18948598 DOI: 10.1073/Pnas.0806195105  0.36
2008 Grueneberg DA, Li W, Davies JE, Sawyer J, Pearlberg J, Harlow E. Kinase requirements in human cells: IV. Differential kinase requirements in cervical and renal human tumor cell lines. Proceedings of the National Academy of Sciences of the United States of America. 105: 16490-5. PMID 18948597 DOI: 10.1073/Pnas.0806578105  0.392
2008 Bommi-Reddy A, Almeciga I, Sawyer J, Geisen C, Li W, Harlow E, Kaelin WG, Grueneberg DA. Kinase requirements in human cells: III. Altered kinase requirements in VHL-/- cancer cells detected in a pilot synthetic lethal screen. Proceedings of the National Academy of Sciences of the United States of America. 105: 16484-9. PMID 18948595 DOI: 10.1073/Pnas.0806574105  0.398
2008 Grueneberg DA, Degot S, Pearlberg J, Li W, Davies JE, Baldwin A, Endege W, Doench J, Sawyer J, Hu Y, Boyce F, Xian J, Munger K, Harlow E. Kinase requirements in human cells: I. Comparing kinase requirements across various cell types. Proceedings of the National Academy of Sciences of the United States of America. 105: 16472-7. PMID 18948591 DOI: 10.1073/Pnas.0808019105  0.406
2007 Sengupta S, Kim KS, Berk MP, Oates R, Escobar P, Belinson J, Li W, Lindner DJ, Williams B, Xu Y. Lysophosphatidic acid downregulates tissue inhibitor of metalloproteinases, which are negatively involved in lysophosphatidic acid-induced cell invasion. Oncogene. 26: 2894-901. PMID 17130843 DOI: 10.1038/Sj.Onc.1210093  0.436
2006 Graham K, Li W, Williams BR, Fraizer G. Vascular endothelial growth factor (VEGF) is suppressed in WT1-transfected LNCaP cells. Gene Expression. 13: 1-14. PMID 16572586 DOI: 10.3727/000000006783991953  0.365
2005 Pearlberg J, Degot S, Endege W, Park J, Davies J, Gelfand E, Sawyer J, Conery A, Doench J, Li W, Gonzalez L, Boyce FM, Brizuela L, Labaer J, Grueneberg D, et al. Screens using RNAi and cDNA expression as surrogates for genetics in mammalian tissue culture cells. Cold Spring Harbor Symposia On Quantitative Biology. 70: 449-59. PMID 16869783 DOI: 10.1101/Sqb.2005.70.047  0.311
2005 Li W, Kessler P, Williams BR. Transcript profiling of Wilms tumors reveals connections to kidney morphogenesis and expression patterns associated with anaplasia. Oncogene. 24: 457-68. PMID 15531917 DOI: 10.1038/Sj.Onc.1208228  0.317
2004 Stanhope-Baker P, Kessler PM, Li W, Agarwal ML, Williams BR. The Wilms tumor suppressor-1 target gene podocalyxin is transcriptionally repressed by p53. The Journal of Biological Chemistry. 279: 33575-85. PMID 15155752 DOI: 10.1074/Jbc.M404787200  0.331
Show low-probability matches.