Year |
Citation |
Score |
2018 |
Aboamer Y, Kracht M. Representing Meaning of Arabic Sentence Dynamically and more Smoothly Procedia Computer Science. 142: 321-327. DOI: 10.1016/J.Procs.2018.10.490 |
0.334 |
|
2013 |
Kracht M. Are Logical Languages Compositional? Studia Logica. 101: 1319-1340. DOI: 10.1007/S11225-013-9535-Y |
0.362 |
|
2011 |
Kracht M. Technical Modal Logic Philosophy Compass. 6: 350-359. DOI: 10.1111/J.1747-9991.2011.00396.X |
0.365 |
|
2008 |
Kracht M. Is adjunction compositional? Research On Language and Computation. 6: 53-77. DOI: 10.1007/S11168-008-9045-7 |
0.323 |
|
2007 |
Kracht M. 8 Modal consequence relations Studies in Logic and Practical Reasoning. 3: 491-545. DOI: 10.1016/S1570-2464(07)80011-5 |
0.402 |
|
2007 |
Kracht M, Kutz O. Logically Possible Worlds and Counterpart Semantics for Modal Logic Philosophy of Logic. 943-995. DOI: 10.1016/B978-044451541-4/50025-7 |
0.312 |
|
2007 |
Kracht M. Compositionality: The very idea Research On Language and Computation. 5: 287-308. DOI: 10.1007/S11168-007-9031-5 |
0.356 |
|
2007 |
Kracht M. The emergence of syntactic structure Linguistics and Philosophy. 30: 47-95. DOI: 10.1007/S10988-006-9011-5 |
0.377 |
|
2006 |
Kracht M. Partial algebras, meaning categories and algebraization Theoretical Computer Science. 354: 131-141. DOI: 10.1016/J.Tcs.2005.11.011 |
0.397 |
|
2006 |
Kowalski T, Kracht M. Semisimple varieties of modal algebras Studia Logica. 83: 351-363. DOI: 10.1007/S11225-006-8308-2 |
0.335 |
|
2004 |
Kracht M. Dov Gabbay. Fibring logics, Oxford Logic Guides, vol. 38. Oxford University Press, 1998, xiii + 475 pp. The Bulletin of Symbolic Logic. 10: 209-211. DOI: 10.1017/S1079898600003930 |
0.318 |
|
2003 |
Kracht M. The Combinatorics of Cases Research On Language and Computation. 1: 59-97. DOI: 10.1023/A:1024514811145 |
0.331 |
|
2002 |
Mares ED, Kracht M, Rijke Md, Wansing H, Zakharyaschev M. Advances in Modal Logic The Bulletin of Symbolic Logic. 8: 95. DOI: 10.2307/2687739 |
0.311 |
|
2002 |
Kracht M. Referent Systems and Relational Grammar Journal of Logic, Language and Information. 11: 251-286. DOI: 10.1023/A:1017512030430 |
0.347 |
|
2002 |
Kracht M. On the semantics of locatives Linguistics and Philosophy. 25: 157-232. DOI: 10.1023/A:1014646826099 |
0.323 |
|
2001 |
Kracht M. Reducing modal consequence relations Journal of Logic and Computation. 11: 879-907. DOI: 10.1093/Logcom/11.6.879 |
0.333 |
|
1999 |
Kracht M, Wolter F. Normal monomodal logics can simulate all others Journal of Symbolic Logic. 64: 99-138. DOI: 10.2307/2586754 |
0.31 |
|
1999 |
Kracht M. Modal Logics That Need Very Large Frames Notre Dame Journal of Formal Logic. 40: 141-173. DOI: 10.1305/Ndjfl/1038949533 |
0.355 |
|
1999 |
Kracht M. Lattices of modal logics and their groups of automorphisms Annals of Pure and Applied Logic. 100: 99-139. DOI: 10.1016/S0168-0072(99)00007-X |
0.34 |
|
1998 |
Kracht M. On extensions of intermediate logics by strong negation Journal of Philosophical Logic. 27: 49-73. DOI: 10.1023/A:1004222213212 |
0.318 |
|
1997 |
Kracht M, Wolter F. Simulation and transfer results in modal logic - A survey Studia Logica. 59: 149-177. DOI: 10.1023/A:1004900300438 |
0.352 |
|
1995 |
Kracht M. Highway to the danger zone Journal of Logic and Computation. 5: 93-109. DOI: 10.1093/Logcom/5.1.93 |
0.321 |
|
1995 |
Kracht M. Gumm's Theorem and the structure of minimal algebras Algebra Universalis. 33: 142-146. DOI: 10.1007/Bf01190772 |
0.345 |
|
1993 |
Kracht M. Prefinitely Axiomatizable Modal and Intermediate Logics Mathematical Logic Quarterly. 39: 301-322. DOI: 10.1002/Malq.19930390136 |
0.337 |
|
1992 |
Kracht M. Even more about the lattice of tense logics Archive For Mathematical Logic. 31: 243-257. DOI: 10.1007/Bf01794981 |
0.361 |
|
1991 |
Kracht M, Wolter F. Properties of independently axiomatizable bimodal logics Journal of Symbolic Logic. 56: 1469-1485. DOI: 10.2307/2275487 |
0.347 |
|
1990 |
Kracht M. An almost general splitting theorem for modal logic Studia Logica. 49: 455-470. DOI: 10.1007/Bf00370158 |
0.371 |
|
Show low-probability matches. |