# Raanan Schul, Ph.D.

## Affiliations: | Mathematics | Stony Brook University, Stony Brook, NY, United States | |

2005 | Yale University, New Haven, CT |

##### Google:

"Raanan Schul"#### Parents

Sign in to add mentorPeter Jones | grad student | 2005 | Yale | |

(Subset of rectifiable curves in Hilbert space and the analyst's TSP.) |

BETA: Related publications

See more...

#### Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |

Li S, Schul R. (2016) The traveling salesman problem in the Heisenberg group: Upper bounding curvature Transactions of the American Mathematical Society. 368: 4585-4620 |

Badger M, Schul R. (2016) Two sufficient conditions for rectifiable measures Proceedings of the American Mathematical Society. 144: 2445-2454 |

Badger M, Schul R. (2015) Multiscale analysis of 1-rectifiable measures: necessary conditions Mathematische Annalen. 361: 1055-1072 |

Azzam J, Schul R. (2014) A quantitative metric differentiation theorem Proceedings of the American Mathematical Society. 142: 1351-1357 |

Schul R. (2014) Ahlfors-regular curves in metric spaces Annales Academiae Scientiarum Fennicae Mathematica. 32: 437-460 |

Azzam J, Schul R. (2012) How to take shortcuts in Euclidean space: Making a given set into a short quasi-convex set Proceedings of the London Mathematical Society. 105: 367-392 |

Azzam J, Schul R. (2012) Hard Sard: Quantitative Implicit Function and Extension Theorems for Lipschitz Maps Geometric and Functional Analysis. 22: 1062-1123 |

Jones PW, Maggioni M, Schul R. (2010) Universal local parametrizations via heat kernels and eigenfunctions of the laplacian Annales Academiae Scientiarum Fennicae Mathematica. 35: 131-174 |

Garnett J, Killip R, Schul R. (2010) A doubling measure on ℝd can charge a rectifiable curve Proceedings of the American Mathematical Society. 138: 1673-1679 |

Schul R. (2009) Bi-lipschitz decomposition of Lipschitz functions into a metric space Revista Matematica Iberoamericana. 25: 521-531 |