Raanan Schul, Ph.D.
Affiliations: | Mathematics | Stony Brook University, Stony Brook, NY, United States | |
2005 | Yale University, New Haven, CT |
Google:
"Raanan Schul"Parents
Sign in to add mentorPeter Jones | grad student | 2005 | Yale | |
(Subset of rectifiable curves in Hilbert space and the analyst's TSP.) |
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Badger M, Schul R. (2017) Multiscale Analysis of 1-rectifiable Measures II: Characterizations Analysis and Geometry in Metric Spaces. 5: 1-39 |
Azzam J, Schul R. (2017) An analyst’s traveling salesman theorem for sets of dimension larger than one Mathematische Annalen. 370: 1389-1476 |
Badger M, Schul R. (2015) Multiscale analysis of 1-rectifiable measures: necessary conditions Mathematische Annalen. 361: 1055-1072 |
Azzam J, Schul R. (2012) How to take shortcuts in Euclidean space: Making a given set into a short quasi-convex set Proceedings of the London Mathematical Society. 105: 367-392 |
Azzam J, Schul R. (2012) Hard Sard: Quantitative Implicit Function and Extension Theorems for Lipschitz Maps Geometric and Functional Analysis. 22: 1062-1123 |
Jones PW, Maggioni M, Schul R. (2010) Universal local parametrizations via heat kernels and eigenfunctions of the laplacian Annales Academiae Scientiarum Fennicae Mathematica. 35: 131-174 |
Schul R. (2009) Bi-lipschitz decomposition of Lipschitz functions into a metric space Revista Matematica Iberoamericana. 25: 521-531 |
Jones PW, Maggioni M, Schul R. (2008) Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels. Proceedings of the National Academy of Sciences of the United States of America. 105: 1803-8 |
Schul R. (2007) Subsets of rectifiable curves in Hilbert space-the analyst's TSP Journal D'Analyse Mathematique. 103: 331-375 |