# James Rovnyak

## Affiliations: | University of Virginia, Charlottesville, VA |

##### Area:

Mathematics##### Google:

"James Rovnyak"
BETA: Related publications

See more...

#### Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |

Alpay D, Dijksma A, Rovnyak J. (2020) On Nudel’man’s Problem and Indefinite Interpolation in the Generalized Schur and Nevanlinna Classes Complex Analysis and Operator Theory. 14: 25 |

Alpay D, Dijksma A, Rovnyak J. (2018) Corrigendum to “Notes on interpolation in the generalized Schur class. II. Nudel’man’s problem” Transactions of the American Mathematical Society. 371: 3743-3745 |

Rovnyak J, Sakhnovich LA. (2015) On indefinite cases of operator identities which arise in interpolation theory. II Operator Theory: Advances and Applications. 244: 341-378 |

Rovnyak J, Sakhnovich LA. (2009) Integral representations for generalized difference kernels having a finite number of negative squares Integral Equations and Operator Theory. 63: 281-296 |

Anderson JM, Dritschel MA, Rovnyak J. (2008) Schwarz-Pick Inequalities for the Schur-Agler Class on the Polydisk and Unit Ball Computational Methods and Function Theory. 8: 339-361 |

Anderson JM, Rovnyak J. (2006) On generalized Schwarz-pick estimates Mathematika. 53: 161-168 |

Alpay D, Dijksma A, Rovnyak J. (2003) A Theorem of Beurling-Lax Type for Hilbert Spaces of Functions Analytic in the Unit Ball Integral Equations and Operator Theory. 47: 251-274 |

Alpay D, Constantinescu T, Dijksma A, et al. (2003) Notes on interpolation in the generalized schur class. II. Nudel'man's problem Transactions of the American Mathematical Society. 355: 813-836 |

Alpay D, Constantinescu T, Dijksma A, et al. (2002) Notes on interpolation in the generalized Schur class. II. Nudel’man’s problem Transactions of the American Mathematical Society. 355: 813-836 |

Alpay D, Dijksma A, Rovnyak J. (2002) A Beurling-Lax type theorem in the unit ball Comptes Rendus Mathematique. 334: 349-354 |