Eric Shea-Brown, Ph.D.

Applied Mathematics University of Washington, Seattle, Seattle, WA 
computational neuroscience
"Eric Shea-Brown"
Cross-listing: Neurotree


Sign in to add mentor
Philip J. Holmes grad student 2004 Princeton (Neurotree)
 (Neural oscillators and integrators in the dynamics of decision tasks)
John Rinzel grad student 2004-2007 NYU (Neurotree)


Sign in to add trainee
Alex Cayco-Gajic grad student (Neurotree)
Joshua H. Goldwyn grad student 2011 University of Washington (Neurotree)
Nicholas Cain grad student 2012 University of Washington (Neurotree)
Guillaume Lajoie grad student 2013 University of Washington (Neurotree)
Kameron Decker Harris grad student 2012-2017 University of Washington (Neurotree)
Andrea K. Barreiro post-doc University of Washington
Hannah Choi post-doc (Neurotree)
Gabrielle J. Gutierrez post-doc 2016- University of Washington (Neurotree)
Joel Zylberberg post-doc 2012-2015 University of Washington (Physics Tree)
Braden A. W. Brinkman post-doc 2013-2018 University of Washington (Neurotree)


Sign in to add collaborator
Frederick M. Rieke collaborator University of Washington (Neurotree)
Jaime de la Rocha collaborator 2004-2008 Center for Neural Science, NYU (Neurotree)
BETA: Related publications


You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Liu YH, Baratin A, Cornford J, et al. (2023) How connectivity structure shapes rich and lazy learning in neural circuits. Arxiv
Zdeblick DN, Shea-Brown ET, Witten DM, et al. (2023) Modeling functional cell types in spike train data. Biorxiv : the Preprint Server For Biology
Weber AI, Shea-Brown E, Rieke F. (2021) Identification of multiple noise sources improves estimation of neural responses across stimulus conditions. Eneuro
Recanatesi S, Farrell M, Lajoie G, et al. (2021) Predictive learning as a network mechanism for extracting low-dimensional latent space representations. Nature Communications. 12: 1417
Gutierrez GJ, Rieke F, Shea-Brown ET. (2021) Nonlinear convergence boosts information coding in circuits with parallel outputs. Proceedings of the National Academy of Sciences of the United States of America. 118
Stern M, Shea-Brown E. (2020) Network Dynamics Governed by Lyapunov Functions: From Memory to Classification. Trends in Neurosciences
de Vries SEJ, Lecoq JA, Buice MA, et al. (2019) A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex. Nature Neuroscience
Recanatesi S, Ocker GK, Buice MA, et al. (2019) Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity. Plos Computational Biology. 15: e1006446
Knox JE, Harris KD, Graddis N, et al. (2019) High-resolution data-driven model of the mouse connectome. Network Neuroscience (Cambridge, Mass.). 3: 217-236
Cayco-Gajic NA, Zylberberg J, Shea-Brown E. (2018) A Moment-Based Maximum Entropy Model for Fitting Higher-Order Interactions in Neural Data. Entropy (Basel, Switzerland). 20
See more...