Piotr Hajlasz
Affiliations: | University of Pittsburgh, Pittsburgh, PA, United States |
Area:
Mathematics, Applied MathematicsGoogle:
"Piotr Hajlasz"Children
Sign in to add traineeGregory P. Francos | grad student | 2011 | University of Pittsburgh |
Zhuomin Liu | grad student | 2012 | University of Pittsburgh |
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Hajlasz P, Zimmerman S. (2020) An implicit theorem for Lipschitz mappings into metric spaces Indiana University Mathematics Journal. 69: 205-228 |
Bonk M, Capogna L, Hajlasz P, et al. (2020) Analysis in Metric Spaces Notices of the American Mathematical Society. 67: 253-256 |
Hajlasz P, Liu Z. (2017) A Marcinkiewicz integral type characterization of the Sobolev space Publicacions Matematiques. 61: 83-104 |
Hajlasz P, Zimmerman S. (2017) The Dubovitskii-Sard theorem in Sobolev spaces Indiana University Mathematics Journal. 66: 705-723 |
Hajlasz P, Schikorra A. (2014) Lipschitz homotopy and density of Lipschitz mappings in Sobolev spaces Annales Academiae Scientiarum Fennicae. Mathematica. 39: 593-604 |
Hajlasz P, Liu Z. (2010) A compact embedding of a sobolev space is equivalent to an embedding into a better space Proceedings of the American Mathematical Society. 138: 3257-3266 |
Hajlasz P, Koskela P, Tuominen H. (2008) Measure density and extendability of Sobolev functions Revista Matematica Iberoamericana. 24: 645-669 |
Hajłasz P, Tyson JT. (2008) Sobolev peano cubes Michigan Mathematical Journal. 56: 687-702 |
Franchi B, Hajlasz P, Koskela P. (1999) Definitions of Sobolev classes on metric spaces Annales De L'Institut Fourier. 49: 1903-1924 |
Hajlasz P, Kinnunen J. (1998) Hölder quasicontinuity of Sobolev functions on metric spaces Revista Matematica Iberoamericana. 14: 601-622 |