Zhao Ren

Statistics University of Pittsburgh, Pittsburgh, PA, United States 
statistical inference
"Zhao Ren"


Sign in to add mentor
Harrison H. Zhou grad student 2014 Yale
 (Structured Covariance and Precision Matrices Estimation: Toeplitz Covariance and Gaussian Graphical Model.)
BETA: Related publications


You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Liu Y, Ren Z. (2020) Minimax estimation of large precision matrices with bandable Cholesky factor The Annals of Statistics. 48
Ke Y, Minsker S, Ren Z, et al. (2019) User-Friendly Covariance Estimation for Heavy-Tailed Distributions Statistical Science. 34: 454-471
Zhang R, Ren Z, Chen W. (2018) SILGGM: An extensive R package for efficient statistical inference in large-scale gene networks. Plos Computational Biology. 14: e1006369
Chen M, Gao C, Ren Z. (2018) Robust Covariance and Scatter Matrix Estimation under Huber's Contamination Model Annals of Statistics. 46: 1932-1960
Chen M, Ren Z, Zhao H, et al. (2016) Asymptotically Normal and Efficient Estimation of Covariate-Adjusted Gaussian Graphical Model. Journal of the American Statistical Association. 111: 394-406
Wang T, Ren Z, Ding Y, et al. (2016) FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks. Plos Computational Biology. 12: e1004755
Cai TT, Ren Z, Zhou HH. (2016) Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation Electronic Journal of Statistics. 10: 1-59
Gao C, Ma Z, Ren Z, et al. (2015) Minimax estimation in sparse canonical correlation analysis Annals of Statistics. 43: 2168-2197
Ren Z, Sun T, Zhang C, et al. (2015) Asymptotic normality and optimalities in estimation of large Gaussian graphical models The Annals of Statistics. 43: 991-1026
Cai TT, Ren Z, Zhou HH. (2013) Optimal rates of convergence for estimating Toeplitz covariance matrices Probability Theory and Related Fields. 156: 101-143
See more...