Hermann Otto Hartley

Affiliations: 
Statistics Texas A & M University, College Station, TX, United States 
Google:
"Hermann Hartley"

Parents

Sign in to add mentor
Adolf Hammerstein grad student 1934 Universität Berlin
 (Direkte Methoden der Variationsrechnung zur Lösung von Randwertproblemen)
John Wishart grad student 1940 Cambridge (Physics Tree)

Children

Sign in to add trainee
George E. P. Box grad student 1953 University of London
Herbert Aron David grad student 1949-1953
J N. K. Rao grad student 1961 Iowa State
Ronald Raymond Hocking grad student 1962 Iowa State
William Boyce Smith grad student 1967 Texas A & M
James E. Gentle grad student 1972-1974 Texas A & M
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Rao JNK, Hartley HO, Cochran WG. (1962) On A Simple Procedure Of Unequal Probability Sampling Without Replacement Journal of the Royal Statistical Society Series B-Methodological. 24: 482-491
DAVID HA, HARTLEY HO, PEARSON ES. (1954) THE DISTRIBUTION OF THE RATIO, IN A SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION Biometrika. 41: 482-493
PEARSON ES, HARTLEY HO. (1951) Charts of the power function for analysis of variance tests, derived from the non-central F-distribution. Biometrika. 38: 112-30
HARTLEY HO, PEARSON ES. (1951) Moment constants for the distribution of range in normal samples Biometrika. 38: 463-464
HARTLEY HO, PEARSON ES. (1950) Table of the probability integral of the t-distribution. Biometrika. 37: 168-72
HARTLEY HO, PEARSON ES. (1950) Tables of the chi 2-integral and of the cumulative poisson distribution. Biometrika. 37: 313-25
HARTLEY HO. (1948) Approximation errors in distributions of independent variates Biometrika. 35: 417-418
HARTLEY HO. (1945) Note on the calculation of the distribution of the estimate of mean deviation in normal samples. Biometrika. 33: 257
CEARY RC, HARTLEY HO. (1943) Minimum range for quasi-normal distributions Biometrika. 33: 100-103
See more...