Year |
Citation |
Score |
2021 |
Zhao L, Akoglu L. On Using Classification Datasets to Evaluate Graph Outlier Detection: Peculiar Observations and New Insights. Big Data. PMID 34870450 DOI: 10.1089/big.2021.0069 |
0.359 |
|
2018 |
Perozzi B, Akoglu L. Discovering Communities and Anomalies in Attributed Graphs: Interactive Visual Exploration and Summarization Acm Transactions On Knowledge Discovery From Data. 12: 24. DOI: 10.1145/3139241 |
0.39 |
|
2018 |
Macha M, Akoglu L. Explaining anomalies in groups with characterizing subspace rules Data Mining and Knowledge Discovery. 32: 1444-1480. DOI: 10.1007/S10618-018-0585-7 |
0.31 |
|
2017 |
Vidros S, Kolias C, Kambourakis G, Akoglu L. Automatic Detection of Online Recruitment Frauds: Characteristics, Methods, and a Public Dataset Future Internet. 9: 6. DOI: 10.3390/Fi9010006 |
0.332 |
|
2017 |
Vlasselaer VV, Eliassi-Rad T, Akoglu L, Snoeck M, Baesens B. GOTCHA! Network-Based Fraud Detection for Social Security Fraud Management Science. 63: 3090-3110. DOI: 10.1287/Mnsc.2016.2489 |
0.338 |
|
2016 |
Rayana S, Akoglu L. Less is More: Building Selective Anomaly Ensembles Acm Transactions On Knowledge Discovery From Data. 10: 42. DOI: 10.1145/2890508 |
0.403 |
|
2016 |
Chan H, Akoglu L. Optimizing network robustness by edge rewiring: a general framework Data Mining and Knowledge Discovery. 1-31. DOI: 10.1007/S10618-015-0447-5 |
0.413 |
|
2015 |
Van Vlasselaer V, Akoglu L, Eliassi-Rad T, Snoeck M, Baesens B. Guilt-by-constellation: Fraud detection by suspicious clique memberships Proceedings of the Annual Hawaii International Conference On System Sciences. 2015: 918-927. DOI: 10.1109/HICSS.2015.114 |
0.308 |
|
2015 |
Yao Y, Tong H, Xie T, Akoglu L, Xu F, Lu J. Detecting high-quality posts in community question answering sites Information Sciences. 302: 70-82. DOI: 10.1016/J.Ins.2014.12.038 |
0.345 |
|
2015 |
Akoglu L, Tong H, Koutra D. Graph based anomaly detection and description: A survey Data Mining and Knowledge Discovery. 29: 626-688. DOI: 10.1007/S10618-014-0365-Y |
0.444 |
|
2015 |
Chan H, Han S, Akoglu L. Where graph topology matters: The robust subgraph problem Siam International Conference On Data Mining 2015, Sdm 2015. 10-18. |
0.373 |
|
2015 |
Rayana S, Akoglu L. Less is more: Building selective anomaly ensembles with application to event detection in temporal graphs Siam International Conference On Data Mining 2015, Sdm 2015. 622-630. |
0.307 |
|
2014 |
Perozzi B, Akoglu L, Iglesias Sánchez P, Müller E. Focused clustering and outlier detection in large attributed graphs Proceedings of the Acm Sigkdd International Conference On Knowledge Discovery and Data Mining. 1346-1355. DOI: 10.1145/2623330.2623682 |
0.368 |
|
2014 |
Kang U, Akoglu L, Chau DH. Big graph mining for the web and social media: Algorithms, anomaly detection, and applications Wsdm 2014 - Proceedings of the 7th Acm International Conference On Web Search and Data Mining. 677. DOI: 10.1145/2556195.2556198 |
0.388 |
|
2014 |
Akoglu L, Khandekar R, Kumar V, Parthasarathy S, Rajan D, Wu KL. Fast nearest neighbor search on large time-evolving graphs Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8724: 17-33. DOI: 10.1007/978-3-662-44848-9_2 |
0.327 |
|
2013 |
Akoglu L, Faloutsos C. Anomaly, event, and fraud detection in large network datasets Wsdm 2013 - Proceedings of the 6th Acm International Conference On Web Search and Data Mining. 773-774. DOI: 10.1145/2433396.2433496 |
0.398 |
|
2013 |
Papalexakis EE, Akoglu L, Ience D. Do more views of a graph help? Community detection and clustering in multi-graphs Proceedings of the 16th International Conference On Information Fusion, Fusion 2013. 899-905. |
0.346 |
|
2012 |
Akoglu L, Chau DH, Kang U, Koutra D, Faloutsos C. OPAvion: Mining and visualization in large graphs Proceedings of the Acm Sigmod International Conference On Management of Data. 717-720. DOI: 10.1145/2213836.2213941 |
0.343 |
|
2012 |
Akoglu L, Tong H, Meeder B, Faloutsos C. PICS: Parameter-free identification of cohesive subgroups in large attributed graphs Proceedings of the 12th Siam International Conference On Data Mining, Sdm 2012. 439-450. |
0.345 |
|
2010 |
Henderson K, Eliassi-Rad T, Faloutsos C, Akoglu L, Li L, Maruhashi K, Prakash BA, Tong H. Metric forensics: A multi-level approach for mining volatile graphs Proceedings of the Acm Sigkdd International Conference On Knowledge Discovery and Data Mining. 163-172. DOI: 10.1145/1835804.1835828 |
0.314 |
|
2009 |
Akoglu L, Faloutsos C. RTG: A recursive realistic graph generator using random typing Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 5781: 13-28. DOI: 10.1007/S10618-009-0140-7 |
0.374 |
|
2008 |
McGlohon M, Akoglu L, Faloutsos C. Weighted graphs and disconnected components: Patterns and a generator Proceedings of the Acm Sigkdd International Conference On Knowledge Discovery and Data Mining. 524-532. DOI: 10.1145/1401890.1401955 |
0.376 |
|
2008 |
Akoglu L, McGlohon M, Faloutsos C. RTM: Laws and a recursive generator for weighted time-evolving graphs Proceedings - Ieee International Conference On Data Mining, Icdm. 701-706. DOI: 10.1109/ICDM.2008.123 |
0.363 |
|
Show low-probability matches. |