Leman Akoglu - Publications

Affiliations: 
Computer Science Stony Brook University, Stony Brook, NY, United States 
Area:
Mining and Modeling of Large-scale Real-world Networks, Social Network Analysis, Machine Learning, Graph Mining, Pattern Discovery, Anomaly and Event Detection.

23 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2021 Zhao L, Akoglu L. On Using Classification Datasets to Evaluate Graph Outlier Detection: Peculiar Observations and New Insights. Big Data. PMID 34870450 DOI: 10.1089/big.2021.0069  0.359
2018 Perozzi B, Akoglu L. Discovering Communities and Anomalies in Attributed Graphs: Interactive Visual Exploration and Summarization Acm Transactions On Knowledge Discovery From Data. 12: 24. DOI: 10.1145/3139241  0.39
2018 Macha M, Akoglu L. Explaining anomalies in groups with characterizing subspace rules Data Mining and Knowledge Discovery. 32: 1444-1480. DOI: 10.1007/S10618-018-0585-7  0.31
2017 Vidros S, Kolias C, Kambourakis G, Akoglu L. Automatic Detection of Online Recruitment Frauds: Characteristics, Methods, and a Public Dataset Future Internet. 9: 6. DOI: 10.3390/Fi9010006  0.332
2017 Vlasselaer VV, Eliassi-Rad T, Akoglu L, Snoeck M, Baesens B. GOTCHA! Network-Based Fraud Detection for Social Security Fraud Management Science. 63: 3090-3110. DOI: 10.1287/Mnsc.2016.2489  0.338
2016 Rayana S, Akoglu L. Less is More: Building Selective Anomaly Ensembles Acm Transactions On Knowledge Discovery From Data. 10: 42. DOI: 10.1145/2890508  0.403
2016 Chan H, Akoglu L. Optimizing network robustness by edge rewiring: a general framework Data Mining and Knowledge Discovery. 1-31. DOI: 10.1007/S10618-015-0447-5  0.413
2015 Van Vlasselaer V, Akoglu L, Eliassi-Rad T, Snoeck M, Baesens B. Guilt-by-constellation: Fraud detection by suspicious clique memberships Proceedings of the Annual Hawaii International Conference On System Sciences. 2015: 918-927. DOI: 10.1109/HICSS.2015.114  0.308
2015 Yao Y, Tong H, Xie T, Akoglu L, Xu F, Lu J. Detecting high-quality posts in community question answering sites Information Sciences. 302: 70-82. DOI: 10.1016/J.Ins.2014.12.038  0.345
2015 Akoglu L, Tong H, Koutra D. Graph based anomaly detection and description: A survey Data Mining and Knowledge Discovery. 29: 626-688. DOI: 10.1007/S10618-014-0365-Y  0.444
2015 Chan H, Han S, Akoglu L. Where graph topology matters: The robust subgraph problem Siam International Conference On Data Mining 2015, Sdm 2015. 10-18.  0.373
2015 Rayana S, Akoglu L. Less is more: Building selective anomaly ensembles with application to event detection in temporal graphs Siam International Conference On Data Mining 2015, Sdm 2015. 622-630.  0.307
2014 Perozzi B, Akoglu L, Iglesias Sánchez P, Müller E. Focused clustering and outlier detection in large attributed graphs Proceedings of the Acm Sigkdd International Conference On Knowledge Discovery and Data Mining. 1346-1355. DOI: 10.1145/2623330.2623682  0.368
2014 Kang U, Akoglu L, Chau DH. Big graph mining for the web and social media: Algorithms, anomaly detection, and applications Wsdm 2014 - Proceedings of the 7th Acm International Conference On Web Search and Data Mining. 677. DOI: 10.1145/2556195.2556198  0.388
2014 Akoglu L, Khandekar R, Kumar V, Parthasarathy S, Rajan D, Wu KL. Fast nearest neighbor search on large time-evolving graphs Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8724: 17-33. DOI: 10.1007/978-3-662-44848-9_2  0.327
2013 Akoglu L, Faloutsos C. Anomaly, event, and fraud detection in large network datasets Wsdm 2013 - Proceedings of the 6th Acm International Conference On Web Search and Data Mining. 773-774. DOI: 10.1145/2433396.2433496  0.398
2013 Papalexakis EE, Akoglu L, Ience D. Do more views of a graph help? Community detection and clustering in multi-graphs Proceedings of the 16th International Conference On Information Fusion, Fusion 2013. 899-905.  0.346
2012 Akoglu L, Chau DH, Kang U, Koutra D, Faloutsos C. OPAvion: Mining and visualization in large graphs Proceedings of the Acm Sigmod International Conference On Management of Data. 717-720. DOI: 10.1145/2213836.2213941  0.343
2012 Akoglu L, Tong H, Meeder B, Faloutsos C. PICS: Parameter-free identification of cohesive subgroups in large attributed graphs Proceedings of the 12th Siam International Conference On Data Mining, Sdm 2012. 439-450.  0.345
2010 Henderson K, Eliassi-Rad T, Faloutsos C, Akoglu L, Li L, Maruhashi K, Prakash BA, Tong H. Metric forensics: A multi-level approach for mining volatile graphs Proceedings of the Acm Sigkdd International Conference On Knowledge Discovery and Data Mining. 163-172. DOI: 10.1145/1835804.1835828  0.314
2009 Akoglu L, Faloutsos C. RTG: A recursive realistic graph generator using random typing Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 5781: 13-28. DOI: 10.1007/S10618-009-0140-7  0.374
2008 McGlohon M, Akoglu L, Faloutsos C. Weighted graphs and disconnected components: Patterns and a generator Proceedings of the Acm Sigkdd International Conference On Knowledge Discovery and Data Mining. 524-532. DOI: 10.1145/1401890.1401955  0.376
2008 Akoglu L, McGlohon M, Faloutsos C. RTM: Laws and a recursive generator for weighted time-evolving graphs Proceedings - Ieee International Conference On Data Mining, Icdm. 701-706. DOI: 10.1109/ICDM.2008.123  0.363
Show low-probability matches.