Year |
Citation |
Score |
2019 |
Bansal N, Dadush D, Garg S, Lovett S. The Gram-Schmidt Walk: A Cure for the Banaszczyk Blues Theory of Computing. 15: 1-27. DOI: 10.4086/Toc.2019.V015A021 |
0.325 |
|
2019 |
Kane DM, Lovett S, Moran S. Near-optimal Linear Decision Trees for k-SUM and Related Problems Journal of the Acm. 66: 1-18. DOI: 10.1145/3285953 |
0.318 |
|
2018 |
Carmosino ML, Impagliazzo R, Lovett S, Mihajlin I. Hardness amplification for non-commutative arithmetic circuits Electronic Colloquium On Computational Complexity. 25: 16. DOI: 10.4230/Lipics.Ccc.2018.12 |
0.314 |
|
2018 |
Chattopadhyay E, Hatami P, Hosseini K, Lovett S. Pseudorandom generators from polarizing random walks Electronic Colloquium On Computational Complexity. 102: 21. DOI: 10.4230/Lipics.Ccc.2018.1 |
0.379 |
|
2018 |
Lovett S. A proof of the GM-MDS conjecture. Electronic Colloquium On Computational Complexity. 25: 47. DOI: 10.14288/1.0377638 |
0.305 |
|
2018 |
Hatami H, Hosseini K, Lovett S. Structure of Protocols for XOR Functions Siam Journal On Computing. 47: 208-217. DOI: 10.1137/17M1136869 |
0.303 |
|
2018 |
Applebaum B, Lovett S. Algebraic Attacks against Random Local Functions and Their Countermeasures Siam Journal On Computing. 47: 52-79. DOI: 10.1137/16M1085942 |
0.372 |
|
2018 |
Bhowmick A, Lovett S. The List Decoding Radius for Reed–Muller Codes Over Small Fields Ieee Transactions On Information Theory. 64: 4382-4391. DOI: 10.1109/Tit.2018.2822686 |
0.364 |
|
2017 |
Kuperberg G, Lovett S, Peled R. Probabilistic existence of regular combinatorial structures Geometric and Functional Analysis. 27: 919-972. DOI: 10.1007/S00039-017-0416-9 |
0.305 |
|
2016 |
HOSSEINI K, LOVETT S, MOSHKOVITZ G, SHAPIRA A. An improved lower bound for arithmetic regularity Mathematical Proceedings of the Cambridge Philosophical Society. 1-5. DOI: 10.1017/S030500411600013X |
0.35 |
|
2016 |
Hatami H, Hatami P, Lovett S. General systems of linear forms: Equidistribution and true complexity Advances in Mathematics. 292: 446-477. DOI: 10.1016/J.Aim.2016.01.019 |
0.332 |
|
2015 |
Lovett S. An Exposition of Sanders' Quasi-Polynomial Freiman-Ruzsa Theorem Theory of Computing. 6: 1-14. DOI: 10.4086/Toc.Gs.2015.006 |
0.347 |
|
2015 |
Göös M, Lovett S, Meka R, Watson T, Zuckerman D. Rectangles are nonnegative juntas Proceedings of the Annual Acm Symposium On Theory of Computing. 14: 257-266. DOI: 10.1137/15M103145X |
0.346 |
|
2015 |
Lovett S, Meka R. Constructive discrepancy minimization by walking on the edges Siam Journal On Computing. 44: 1573-1582. DOI: 10.1137/130929400 |
0.33 |
|
2015 |
Gavinsky D, Lovett S, Saks M, Srinivasan S. A tail bound for read-k families of functions Random Structures and Algorithms. 47: 99-108. DOI: 10.1002/Rsa.20532 |
0.326 |
|
2014 |
Ben-Sasson E, Lovett S, Ron-Zewi N. An Additive Combinatorics Approach Relating Rank to Communication Complexity Journal of the Acm. 61: 22. DOI: 10.1145/2629598 |
0.327 |
|
2014 |
Bhowmick A, Dvir Z, Lovett S. New bounds for matching vector families Siam Journal On Computing. 43: 1654-1683. DOI: 10.1137/130932296 |
0.338 |
|
2014 |
Hatami H, Lovett S. Correlation testing for affine invariant properties on n pin the high error regime? Siam Journal On Computing. 43: 1417-1455. DOI: 10.1137/110831349 |
0.344 |
|
2014 |
Even-Zohar C, Lovett S. The Freiman-Ruzsa theorem over finite fields Journal of Combinatorial Theory. Series A. 125: 333-341. DOI: 10.1016/J.Jcta.2014.03.011 |
0.318 |
|
2013 |
Lovett S, Porat E. A space lower bound for dynamic approximate membership data structures Siam Journal On Computing. 42: 2182-2196. DOI: 10.1137/120867044 |
0.332 |
|
2013 |
Dvir Z, Kollár J, Lovett S. Variety Evasive Sets Computational Complexity. 23: 509-529. DOI: 10.1007/S00037-013-0073-9 |
0.358 |
|
2013 |
Lovett S, Mukhopadhyay P, Shpilka A. Pseudorandom generators for CC0[p] and the Fourier spectrum of low-degree polynomials over finite fields Computational Complexity. 22: 679-725. DOI: 10.1007/s00037-012-0051-7 |
0.33 |
|
2012 |
Kaufman T, Lovett S, Porat E. Weight distribution and list-decoding size of reed-muller codes Ieee Transactions On Information Theory. 58: 2689-2696. DOI: 10.1109/Tit.2012.2184841 |
0.309 |
|
2012 |
Lovett S. Equivalence of polynomial conjectures in additive combinatorics Combinatorica. 32: 607-618. DOI: 10.1007/S00493-012-2714-Z |
0.346 |
|
2012 |
Ben-Eliezer I, Hod R, Lovett S. Random low-degree polynomials are hard to approximate Computational Complexity. 21: 63-81. DOI: 10.1007/S00037-011-0020-6 |
0.386 |
|
2012 |
Alon N, Lovett S. Almost k-wise vs. k-wise independent permutations, and uniformity for general group actions Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7408: 350-361. DOI: 10.1007/978-3-642-32512-0_30 |
0.306 |
|
2011 |
Lovett S. Computing Polynomials with Few Multiplications Theory of Computing. 7: 185-188. DOI: 10.4086/Toc.2011.V007A013 |
0.333 |
|
2011 |
Hatami H, Lovett S. Higher-Order Fourier Analysis Of Fnp And The Complexity Of Systems Of Linear Forms Geometric and Functional Analysis. 21: 1331-1357. DOI: 10.1007/S00039-011-0141-8 |
0.316 |
|
2010 |
Lovett S. Holes in Generalized Reed-Muller codes Ieee Transactions On Information Theory. 56: 2583-2586. DOI: 10.1109/Tit.2010.2046206 |
0.337 |
|
2010 |
Lovett S, Mukhopadhyay P, Shpilka A. Pseudorandom generators for CC0[p] and the fourier spectrum of low-degree polynomials over finite fields Proceedings - Annual Ieee Symposium On Foundations of Computer Science, Focs. 695-704. DOI: 10.1007/S00037-012-0051-7 |
0.422 |
|
2009 |
Lovett S, Reingold O, Trevisan L, Vadhan S. Pseudorandom bit generators that fool modular sums Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 5687: 615-630. DOI: 10.1007/978-3-642-03685-9_46 |
0.594 |
|
2008 |
Lovett S. Unconditional pseudorandom generators for low degree polynomials Proceedings of the Annual Acm Symposium On Theory of Computing. 557-562. DOI: 10.4086/Toc.2009.V005A003 |
0.353 |
|
2008 |
Lovett S, Sodin S. Almost euclidean sections of the N-dimensional cross-polytope using O(N) random bits Communications in Contemporary Mathematics. 10: 477-489. DOI: 10.1142/S0219199708002879 |
0.341 |
|
Show low-probability matches. |