Year |
Citation |
Score |
2006 |
Li J, Gupta SS. Optimal rate of convergence of monotone empirical Bayes tests for normal means Journal of Statistical Planning and Inference. 136: 2352-2366. DOI: 10.1016/J.Jspi.2005.08.019 |
0.425 |
|
2005 |
Gupta SS, Li J. On empirical Bayes procedures for selecting good populations in a positive exponential family Journal of Statistical Planning and Inference. 129: 3-18. DOI: 10.1016/J.Jspi.2004.06.036 |
0.529 |
|
2005 |
Li J, Gupta SS, Liese F. Convergence rates of empirical Bayes estimation in exponential family Journal of Statistical Planning and Inference. 131: 101-115. DOI: 10.1016/J.Jspi.2003.12.017 |
0.397 |
|
2003 |
Li J, Gupta SS. Optimal rate of empirical Bayes tests for lower truncation parameters Statistics and Probability Letters. 65: 177-185. DOI: 10.1016/J.Spl.2003.07.016 |
0.419 |
|
2002 |
Gupta SS, He S, Li J. On selection procedures for positive exponential family distributions based on type-I censored data Journal of Financial Economics. 66: 11-21. DOI: 10.1016/S0378-3758(01)00286-5 |
0.499 |
|
2002 |
Gupta SS, Liang T. Selecting the most reliable Poisson population provided it is better than a control: A nonparametric empirical Bayes approach Journal of Statistical Planning and Inference. 103: 191-203. DOI: 10.1016/S0378-3758(01)00221-X |
0.489 |
|
2002 |
Gupta SS, Miescke KJ. On the performance of subset selection rules under normality Journal of Statistical Planning and Inference. 103: 101-115. DOI: 10.1016/S0378-3758(01)00214-2 |
0.44 |
|
2001 |
Li J, Gupta SS. Monotone Empirical Bayes Tests With Optimal Rate Of Convergence For A Truncation Parameter Statistics and Risk Modeling. 19: 223-238. DOI: 10.1524/Strm.2001.19.3.223 |
0.395 |
|
1999 |
Gupta SS, Liang T. On empirical Bayes simultaneous selection procedures for comparing normal populations with a standard Journal of Statistical Planning and Inference. 77: 73-88. DOI: 10.1016/S0378-3758(98)00177-3 |
0.448 |
|
1998 |
Gupta SS, Liang TC. Simultaneous lower confidence bounds for probabilities of correct selections Journal of Statistical Planning and Inference. 72: 279-290. DOI: 10.1016/S0378-3758(98)00037-8 |
0.445 |
|
1998 |
Balakrishnan N, Gupta SS. 2 Higher order moments of order statistics from exponential and right-truncated exponential distributions and applications to life-testing problems Handbook of Statistics. 17: 25-59. DOI: 10.1016/S0169-7161(98)17004-9 |
0.366 |
|
1996 |
Gupta SS, Panchapakesan S. 17 Design of experiments with selection and ranking goals Handbook of Statistics. 13: 555-585. DOI: 10.1016/S0169-7161(96)13019-4 |
0.39 |
|
1996 |
Gupta SS, Miescke KJ. Bayesian look ahead one-stage sampling allocations for selection of the best population Journal of Statistical Planning and Inference. 54: 229-244. DOI: 10.1016/0378-3758(95)00169-7 |
0.411 |
|
1996 |
Gupta SS, Huang DY. On detecting influential data and selecting regression variables Journal of Statistical Planning and Inference. 53: 421-435. DOI: 10.1016/0378-3758(95)00103-4 |
0.356 |
|
1995 |
Balakrishan N, Gupta SS, Panchapakesan S. Estimation of the location and scale parameters of the extreme value distribution based on multiply type-ii censored samples Communications in Statistics - Theory and Methods. 24: 2105-2125. DOI: 10.1080/03610929508831605 |
0.329 |
|
1994 |
Gastaldi T, Gupta SS. Minimax type procedures for nonparametric selection of the “best” population with partially classified data Communications in Statistics-Theory and Methods. 23: 2503-2532. DOI: 10.1080/03610929408831400 |
0.409 |
|
1994 |
Gupta SS, Liang T. On empirical Bayes selection rules for sampling inspection Journal of Statistical Planning and Inference. 38: 43-64. DOI: 10.1016/0378-3758(92)00154-V |
0.459 |
|
1993 |
Gupta SS, Miescke KJ. On combining selection and estimation in the search for the largest binomial parameter Journal of Statistical Planning and Inference. 36: 129-140. DOI: 10.1016/0378-3758(93)90118-P |
0.476 |
|
1993 |
Gupta SS, Hande SN. Single-sample Bayes and empirical Bayes rules for ranking and estimating multinomial probabilities Journal of Statistical Planning and Inference. 35: 367-382. DOI: 10.1016/0378-3758(93)90023-Y |
0.404 |
|
1991 |
Gupta SS, Han S. An elimination type two-stage Procedure for Selecting The Population with The Largest Mean From k Logistic Populations American Journal of Mathematical and Management Sciences. 11: 351-370. DOI: 10.1080/01966324.1991.10737316 |
0.42 |
|
1990 |
Gupta SS, Leu LY. Selecting the fairest of k(< 2) m-sided dice Communications in Statistics - Theory and Methods. 19: 2159-2177. DOI: 10.1080/03610929008830313 |
0.439 |
|
1990 |
Gupta SS, Liang TC, Leu LY. On lower confidence bounds for pcs in truncated location parameter models Communications in Statistics - Theory and Methods. 19: 527-546. DOI: 10.1080/03610929008830216 |
0.349 |
|
1989 |
Gupta SS, Liang T. Selecting the best binomial population: parametric empirical Bayes approach Journal of Statistical Planning and Inference. 23: 21-31. DOI: 10.1016/0378-3758(89)90036-0 |
0.427 |
|
1989 |
Gupta SS, Miescke KJ. On selecting the best of k lognormal distributions Metrika. 36: 233-247. DOI: 10.1007/Bf02614096 |
0.47 |
|
1988 |
Gupta SS, Panchapakesan S. 9 Selection and ranking procedures in reliability models Handbook of Statistics. 7: 131-156. DOI: 10.1016/S0169-7161(88)07011-7 |
0.412 |
|
1987 |
Gupta SS, Leu LY. An asymptotic distribution-free selection procedure for a two-way layout problem Communications in Statistics - Theory and Methods. 16: 2313-2325. DOI: 10.1080/03610928708829508 |
0.416 |
|
1986 |
Gupta SS, McDonald GC. A statistical selection approach to binomial models Journal of Quality Technology. 18: 103-115. DOI: 10.1080/00224065.1986.11978995 |
0.344 |
|
1986 |
Gupta SS, Miescke KJ. Optimum two-stage selection procedures for Weibull populations Journal of Statistical Planning and Inference. 15: 147-156. DOI: 10.1016/0378-3758(86)90093-5 |
0.381 |
|
1985 |
Gupta SS, Panchapakesan S, Sohn JK. On The Distribution Of The Studentized Maximum Of Equally Correlated Normal Random Variables Communications in Statistics - Simulation and Computation. 14: 103-135. DOI: 10.1080/03610918508812429 |
0.324 |
|
1985 |
Gupta SS, Yang HM. Bayes-P* subset selection procedures for the best population Journal of Statistical Planning and Inference. 12: 213-233. DOI: 10.1016/0378-3758(85)90071-0 |
0.323 |
|
1985 |
Gupta SS, Miescke KJ. Minimax multiple t-tests for comparing k normal populations with a control Journal of Statistical Planning and Inference. 12: 161-169. DOI: 10.1016/0378-3758(85)90065-5 |
0.312 |
|
1984 |
Gupta SS, Miescke KJ. Sequential Selection Procedures--A Decision Theoretic Approach Annals of Statistics. 12: 336-350. DOI: 10.1214/Aos/1176346411 |
0.336 |
|
1983 |
Gupta SS, Miescke KJ. An Essentially Complete Class of Two-Stage Selection Procedures with Screening at the First Stage Statistics and Risk Modeling. 1: 427-440. DOI: 10.1524/Strm.1983.1.45.427 |
0.396 |
|
1983 |
Gupta SS, Hsiao P. Empirical bayes rules for selecting good populations Journal of Statistical Planning and Inference. 8: 87-101. DOI: 10.1016/0378-3758(83)90064-2 |
0.428 |
|
1981 |
Gupta SS, Kim WC. On the Problem of Selecting Good Populations Communications in Statistics - Theory and Methods. 10: 1043-1077. DOI: 10.1080/03610928108828094 |
0.401 |
|
1980 |
Gupta SS, Huang D. A Note on Optimal Subset Selection Procedures Annals of Statistics. 8: 1164-1167. DOI: 10.1214/Aos/1176345154 |
0.397 |
|
1980 |
Gupta SS, Singh AK. On Rules Based On Sample Medians For Selection Of The Largest Location Parameter Communications in Statistics - Theory and Methods. 9: 1277-1298. DOI: 10.1080/03610928008827958 |
0.42 |
|
1980 |
Gupta SS, Hsu JC. Subset selection procedures with application to motor vehicle fatality data in a two-way layout Technometrics. 22: 543-546. DOI: 10.1080/00401706.1980.10486203 |
0.361 |
|
1980 |
Gupta SS, Huang DY. An essentially complete class of multiple decision procedures Journal of Statistical Planning and Inference. 4: 115-121. DOI: 10.1016/0378-3758(80)90001-4 |
0.447 |
|
1979 |
Gupta SS, Lu MW. Subset selection procedures for restricted families of probability distributions Annals of the Institute of Statistical Mathematics. 31: 235-252. DOI: 10.1007/Bf02480280 |
0.475 |
|
1978 |
Gupta SS, Hsu JC. On the performance of some subset selection procedures Communications in Statistics - Simulation and Computation. 7: 561-591. DOI: 10.1080/03610917808812097 |
0.418 |
|
1977 |
Gupta SS, Huang DY. Some Multiple Decision Problems in Analysis of Variance Communications in Statistics - Theory and Methods. 6: 1035-1054. DOI: 10.1080/03610927708827550 |
0.504 |
|
1977 |
Gupta SS. Selection and Ranking Procedures: A Brief Introduction Communications in Statistics - Theory and Methods. 6: 993-1001. DOI: 10.1080/03610927708827548 |
0.39 |
|
1977 |
Carroll RJ, Gupta SS. On the Probabilities of Rankings of k Populations with Applications Journal of Statistical Computation and Simulation. 5: 145-157. DOI: 10.1080/00949657708810147 |
0.501 |
|
1975 |
Carroll R, Gupta S, Huang D. Selection Procedures for the t Best Populations Communications in Statistics - Simulation and Computation. 4: 987-1008. DOI: 10.1080/03610917508548501 |
0.505 |
|
1974 |
Gupta SS, Wen-Tao H. On a maximin strategy for sampling based on selection procedures from several populations Communications in Statistics. 3: 325-359. DOI: 10.1080/03610927408827136 |
0.316 |
|
1970 |
Gnanadesikan M, Gupta SS. A Selection Procedure for Multivariate Normal Distributions in Terms of the Generalized Variances Technometrics. 12: 103-117. DOI: 10.1080/00401706.1970.10488638 |
0.333 |
|
1966 |
GUPTA SS, GNANADESIKAN M. Estimation of the parameters of the logistic distribution Biometrika. 53: 565-570. DOI: 10.1093/Biomet/53.3-4.565 |
0.31 |
|
1965 |
GUPTA SS, PILLAI KCS. On linear functions of ordered correlated normal random variables Biometrika. 52: 367-379. DOI: 10.1093/Biomet/52.3-4.367 |
0.329 |
|
1965 |
Gupta SS. On Some Multiple Decision (Selection and Ranking) Rules Technometrics. 7: 225-245. DOI: 10.1080/00401706.1965.10490251 |
0.403 |
|
1964 |
GUPTA SS, PILLAI KCS, STECK GP. On the distribution of linear functions and ratios of linear functions of ordered correlated normal random variables with emphasis on range Biometrika. 51: 143-151. DOI: 10.1093/Biomet/51.1-2.143 |
0.31 |
|
Show low-probability matches. |