Year |
Citation |
Score |
2020 |
Dunton AM, Jofre L, Iaccarino G, Doostan A. Pass-efficient methods for compression of high-dimensional turbulent flow data Journal of Computational Physics. 109704. DOI: 10.1016/J.Jcp.2020.109704 |
0.385 |
|
2020 |
Choi H, Kim J, Doostan A, Park KC. Acceleration of uncertainty propagation through Lagrange multipliers in partitioned stochastic method Computer Methods in Applied Mechanics and Engineering. 362: 112837. DOI: 10.1016/J.Cma.2020.112837 |
0.455 |
|
2020 |
De S, Maute K, Doostan A. Bi-fidelity stochastic gradient descent for structural optimization under uncertainty Computational Mechanics. 1-27. DOI: 10.1007/S00466-020-01870-W |
0.434 |
|
2019 |
Skinner RW, Doostan A, Peters EL, Evans JA, Jansen KE. Reduced-Basis Multifidelity Approach for Efficient Parametric Study of NACA Airfoils Aiaa Journal. 57: 1481-1491. DOI: 10.2514/1.J057452 |
0.372 |
|
2019 |
Pettersson P, Doostan A, Nordström J. Level set methods for stochastic discontinuity detection in nonlinear problems Journal of Computational Physics. 392: 511-531. DOI: 10.1016/J.Jcp.2019.04.053 |
0.421 |
|
2018 |
Fairbanks HR, Jofre L, Geraci G, Iaccarino G, Doostan A. Bi-fidelity approximation for uncertainty quantification and sensitivity analysis of irradiated particle-laden turbulence Journal of Computational Physics. 402: 108996. DOI: 10.1016/J.Jcp.2019.108996 |
0.435 |
|
2018 |
Hampton J, Fairbanks HR, Narayan AC, Doostan A. Practical error bounds for a non-intrusive bi-fidelity approach to parametric/stochastic model reduction Journal of Computational Physics. 368: 315-332. DOI: 10.1016/J.Jcp.2018.04.015 |
0.422 |
|
2018 |
Hampton J, Doostan A. Basis adaptive sample efficient polynomial chaos (BASE-PC) Journal of Computational Physics. 371: 20-49. DOI: 10.1016/J.Jcp.2018.03.035 |
0.463 |
|
2018 |
Diaz P, Doostan A, Hampton J. Sparse polynomial chaos expansions via compressed sensing and D-optimal design Computer Methods in Applied Mechanics and Engineering. 336: 640-666. DOI: 10.1016/J.Cma.2018.03.020 |
0.416 |
|
2017 |
Reynolds MJ, Beylkin G, Doostan A. Optimization via separated representations and the canonical tensor decomposition Journal of Computational Physics. 348: 220-230. DOI: 10.1016/J.Jcp.2017.07.012 |
0.327 |
|
2017 |
Fairbanks HR, Doostan A, Ketelsen C, Iaccarino G. A low-rank control variate for multilevel Monte Carlo simulation of high-dimensional uncertain systems Journal of Computational Physics. 341: 121-139. DOI: 10.1016/J.Jcp.2017.03.060 |
0.4 |
|
2017 |
Hadigol M, Doostan A. Least squares polynomial chaos expansion: A review of sampling strategies Computer Methods in Applied Mechanics and Engineering. 332: 382-407. DOI: 10.1016/J.Cma.2017.12.019 |
0.386 |
|
2017 |
Balducci M, Jones B, Doostan A. Orbit uncertainty propagation and sensitivity analysis with separated representations Celestial Mechanics and Dynamical Astronomy. 129: 105-136. DOI: 10.1007/S10569-017-9767-7 |
0.431 |
|
2017 |
Constantine PG, Doostan A. Time‐dependent global sensitivity analysis with active subspaces for a lithium ion battery model Statistical Analysis and Data Mining. 10: 243-262. DOI: 10.1002/Sam.11347 |
0.331 |
|
2016 |
Schiavazzi DE, Doostan A, Iaccarino G, Marsden AL. A generalized multi-resolution expansion for uncertainty propagation with application to cardiovascular modeling. Computer Methods in Applied Mechanics and Engineering. 314: 196-221. PMID 28845061 DOI: 10.1016/J.Cma.2016.09.024 |
0.477 |
|
2016 |
Reynolds MJ, Doostan A, Beylkin G. Randomized Alternating Least Squares for Canonical Tensor Decompositions: Application to A PDE With Random Data Siam Journal On Scientific Computing. 38: A2634-A2664. DOI: 10.1137/15M1042802 |
0.379 |
|
2016 |
Peng J, Hampton J, Doostan A. On polynomial chaos expansion via gradient-enhanced ℓ1-minimization Journal of Computational Physics. 310: 440-458. DOI: 10.1016/J.Jcp.2015.12.049 |
0.471 |
|
2016 |
Pettersson P, Nordström J, Doostan A. A well-posed and stable stochastic Galerkin formulation of theincompressible Navier-Stokes equations with random data Journal of Computational Physics. 306: 92-116. DOI: 10.1016/J.Jcp.2015.11.027 |
0.426 |
|
2015 |
Jones BA, Parrish N, Doostan A. Postmaneuver collision probability estimation using sparse polynomial chaos expansions Journal of Guidance, Control, and Dynamics. 38: 1425-1437. DOI: 10.2514/1.G000595 |
0.446 |
|
2015 |
Hadigol M, Maute K, Doostan A. On uncertainty quantification of lithium-ion batteries: Application to an LiC6/LiCoO2 cell Journal of Power Sources. 300: 507-524. DOI: 10.1016/J.Jpowsour.2015.09.060 |
0.366 |
|
2015 |
Hampton J, Doostan A. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies Journal of Computational Physics. 280: 363-386. DOI: 10.1016/J.Jcp.2014.09.019 |
0.437 |
|
2015 |
Hampton J, Doostan A. Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression Computer Methods in Applied Mechanics and Engineering. 290: 73-97. DOI: 10.1016/J.Cma.2015.02.006 |
0.428 |
|
2015 |
Feldhacker JD, Jones BA, Doostan A, Hampton J. Reduced cost mission design using surrogate models Advances in Space Research. DOI: 10.1016/J.Asr.2015.11.002 |
0.42 |
|
2015 |
Lang C, Sharma A, Doostan A, Maute K. Heaviside enriched extended stochastic FEM for problems with uncertain material interfaces Computational Mechanics. DOI: 10.1007/S00466-015-1199-1 |
0.426 |
|
2014 |
Schiavazzi D, Doostan A, Iaccarino G. Sparse multiresolution regression for uncertainty propagation International Journal For Uncertainty Quantification. 4: 303-331. DOI: 10.1615/Int.J.Uncertaintyquantification.2014010147 |
0.48 |
|
2014 |
Jagalur Mohan J, Sahni O, Doostan A, Oberai AA. Variational Multiscale Analysis: The Fine-Scale Green's Function for Stochastic Partial Differential Equations Siam/Asa Journal On Uncertainty Quantification. 2: 397-422. DOI: 10.1137/130940359 |
0.326 |
|
2014 |
Peng J, Hampton J, Doostan A. A weighted ℓ1-minimization approach for sparse polynomial chaos expansions Journal of Computational Physics. 267: 92-111. DOI: 10.1016/J.Jcp.2014.02.024 |
0.421 |
|
2014 |
Hadigol M, Doostan A, Matthies HG, Niekamp R. Partitioned treatment of uncertainty in coupled domain problems: A separated representation approach Computer Methods in Applied Mechanics and Engineering. 274: 103-124. DOI: 10.1016/J.Cma.2014.02.004 |
0.432 |
|
2014 |
Lang C, Makhija D, Doostan A, Maute K. A simple and efficient preconditioning scheme for heaviside enriched XFEM Computational Mechanics. 54: 1357-1374. DOI: 10.1007/S00466-014-1063-8 |
0.445 |
|
2014 |
Hadigol M, Doostan A, Matthies HG, Niekamp R. Partitioned solution of coupled stochastic problems Computational Methods in Applied Sciences. 33: 405-422. DOI: 10.1007/978-3-319-06136-8_16 |
0.365 |
|
2014 |
Brezina M, Doostan A, Manteuffel T, Mccormick S, Ruge J. Smoothed aggregation algebraic multigrid for stochastic PDE problems with layered materials Numerical Linear Algebra With Applications. 21: 239-255. DOI: 10.1002/Nla.1924 |
0.408 |
|
2014 |
Balducci M, Jones B, Doostan A. Orbit uncertainty propagation with separated representations Advances in the Astronautical Sciences. 150: 2469-2487. |
0.351 |
|
2013 |
Jones BA, Doostan A, Born GH. Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos Journal of Guidance, Control, and Dynamics. 36: 430-444. DOI: 10.2514/1.57599 |
0.443 |
|
2013 |
Doostan A, Validi A, Iaccarino G. Non-intrusive low-rank separated approximation of high-dimensional stochastic models Computer Methods in Applied Mechanics and Engineering. 263: 42-55. DOI: 10.1016/J.Cma.2013.04.003 |
0.482 |
|
2013 |
Pettersson P, Doostan A, Nordström J. On stability and monotonicity requirements of finite difference approximations of stochastic conservation laws with random viscosity Computer Methods in Applied Mechanics and Engineering. 258: 134-151. DOI: 10.1016/J.Cma.2013.02.009 |
0.411 |
|
2013 |
Jones BA, Doostan A. Satellite collision probability estimation using polynomial chaos expansions Advances in Space Research. 52: 1860-1875. DOI: 10.1016/J.Asr.2013.08.027 |
0.444 |
|
2013 |
Lang C, Doostan A, Maute K. Extended stochastic FEM for diffusion problems with uncertain material interfaces Computational Mechanics. 51: 1031-1049. DOI: 10.1007/S00466-012-0785-8 |
0.395 |
|
2012 |
Mehrez L, Doostan A, Moens D, Vandepitte D. Stochastic identification of composite material properties from limited experimental databases, Part II: Uncertainty modelling Mechanical Systems and Signal Processing. 27: 484-498. DOI: 10.1016/J.Ymssp.2011.09.001 |
0.403 |
|
2011 |
Doostan A, Owhadi H. A non-adapted sparse approximation of PDEs with stochastic inputs Journal of Computational Physics. 230: 3015-3034. DOI: 10.1016/J.Jcp.2011.01.002 |
0.454 |
|
2010 |
Hajirasouliha I, Doostan A. A simplified model for seismic response prediction of concentrically braced frames Advances in Engineering Software. 41: 497-505. DOI: 10.1016/J.Advengsoft.2009.10.008 |
0.329 |
|
2010 |
Mehrez L, Doostan A, Moens D, Vandepitte D. A validation study of a stochastic representation of composite material properties from limited experimental data Proceedings of Isma 2010 - International Conference On Noise and Vibration Engineering, Including Usd 2010. 4903-4924. |
0.329 |
|
2009 |
Chantrasmi T, Doostan A, Iaccarino G. Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces Journal of Computational Physics. 228: 7159-7180. DOI: 10.1016/J.Jcp.2009.06.024 |
0.448 |
|
2009 |
Doostan A, Iaccarino G. A least-squares approximation of partial differential equations with high-dimensional random inputs Journal of Computational Physics. 228: 4332-4345. DOI: 10.1016/J.Jcp.2009.03.006 |
0.487 |
|
2009 |
Constantine PG, Doostan A, Iaccarino G. A hybrid collocation/Galerkin scheme for convective heat transfer problems with stochastic boundary conditions International Journal For Numerical Methods in Engineering. 80: 868-880. DOI: 10.1002/Nme.2564 |
0.375 |
|
2008 |
Ghanem RG, Doostan A, Red-Horse J. A probabilistic construction of model validation Computer Methods in Applied Mechanics and Engineering. 197: 2585-2595. DOI: 10.1016/J.Cma.2007.08.029 |
0.426 |
|
2007 |
Ghanem R, Saad G, Doostan A. Efficient solution of stochastic systems: Application to the embankment dam problem Structural Safety. 29: 238-251. DOI: 10.1016/J.Strusafe.2006.07.015 |
0.488 |
|
2007 |
Doostan A, Ghanem RG, Red-Horse J. Stochastic model reduction for chaos representations Computer Methods in Applied Mechanics and Engineering. 196: 3951-3966. DOI: 10.1016/J.Cma.2006.10.047 |
0.463 |
|
2007 |
Ghanem R, Red-Horse J, Benjamin A, Doostan A, Yu Z. Stochastic process model for material properties under incomplete information Collection of Technical Papers - Aiaa/Asme/Asce/Ahs/Asc Structures, Structural Dynamics and Materials Conference. 4: 3271-3277. |
0.345 |
|
2006 |
Ghanem RG, Doostan A. On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data Journal of Computational Physics. 217: 63-81. DOI: 10.1016/J.Jcp.2006.01.037 |
0.43 |
|
2005 |
Moghaddam H, Hajirasouliha I, Doostan A. Optimum seismic design of concentrically braced steel frames: Concepts and design procedures Journal of Constructional Steel Research. 61: 151-166. DOI: 10.1016/J.Jcsr.2004.08.002 |
0.329 |
|
Show low-probability matches. |