Year |
Citation |
Score |
2020 |
Larios A, Pei Y. Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data Evolution Equations and Control Theory. 9: 0. DOI: 10.3934/Eect.2020031 |
0.542 |
|
2020 |
Carlson E, Hudson J, Larios A. Parameter Recovery for the 2 Dimensional Navier--Stokes Equations via Continuous Data Assimilation Siam Journal On Scientific Computing. 42. DOI: 10.1137/19M1248583 |
0.471 |
|
2020 |
Larios A, Yamazaki K. On the well-posedness of an anisotropically-reduced two-dimensional Kuramoto–Sivashinsky equation Physica D: Nonlinear Phenomena. 411: 132560. DOI: 10.1016/J.Physd.2020.132560 |
0.641 |
|
2020 |
Jafarzadeh S, Larios A, Bobaru F. Efficient Solutions for Nonlocal Diffusion Problems Via Boundary-Adapted Spectral Methods Journal of Peridynamics and Nonlocal Modeling. 2: 85-110. DOI: 10.1007/S42102-019-00026-6 |
0.345 |
|
2019 |
Larios A, Pei Y, Rebholz L. Global well-posedness of the velocity–vorticity-Voigt model of the 3D Navier–Stokes equations Journal of Differential Equations. 266: 2435-2465. DOI: 10.1016/J.Jde.2018.08.033 |
0.66 |
|
2019 |
Larios A, Rebholz LG, Zerfas C. Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier–Stokes equations Computer Methods in Applied Mechanics and Engineering. 345: 1077-1093. DOI: 10.1016/J.Cma.2018.09.004 |
0.415 |
|
2018 |
Biswas A, Hudson J, Larios A, Pei Y. Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields Asymptotic Analysis. 108: 1-43. DOI: 10.3233/Asy-171454 |
0.496 |
|
2018 |
Larios A, Petersen MR, Titi ES, Wingate B. A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization Theoretical and Computational Fluid Dynamics. 32: 23-34. DOI: 10.1007/S00162-017-0434-0 |
0.688 |
|
2017 |
Larios A, Pei Y. On the local well-posedness and a Prodi–Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion Journal of Differential Equations. 263: 1419-1450. DOI: 10.1016/J.Jde.2017.03.024 |
0.605 |
|
2017 |
Biswas A, Foias C, Larios A. On the attractor for the semi-dissipative Boussinesq equations Annales De L Institut Henri Poincare-Analyse Non Lineaire. 34: 381-405. DOI: 10.1016/J.Anihpc.2015.12.006 |
0.709 |
|
2014 |
Larios A, Titi ES. Higher-order global regularity of an inviscid voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations Journal of Mathematical Fluid Mechanics. 16: 59-76. DOI: 10.1007/S00021-013-0136-3 |
0.62 |
|
2013 |
Larios A, Lunasin E, Titi ES. Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion Journal of Differential Equations. 255: 2636-2654. DOI: 10.1016/J.Jde.2013.07.011 |
0.546 |
|
2012 |
Kuberry P, Larios A, Rebholz LG, Wilson NE. Numerical approximation of the Voigt regularization for incompressible Navier-Stokes and magnetohydrodynamic flows Computers and Mathematics With Applications. 64: 2647-2662. DOI: 10.1016/J.Camwa.2012.07.010 |
0.467 |
|
2010 |
Larios A, Titi ES. On the higher-order global regularity of the inviscid voigt-regularization of three-dimensional hydrodynamic models Discrete and Continuous Dynamical Systems - Series B. 14: 603-627. DOI: 10.3934/Dcdsb.2010.14.603 |
0.678 |
|
Show low-probability matches. |