Adam Larios, Ph.D. - Publications

Affiliations: 
2011 Mathematics - Ph.D. University of California, Irvine, Irvine, CA 
Area:
Mathematics, Applied Mathematics

14 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Larios A, Pei Y. Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data Evolution Equations and Control Theory. 9: 0. DOI: 10.3934/Eect.2020031  0.542
2020 Carlson E, Hudson J, Larios A. Parameter Recovery for the 2 Dimensional Navier--Stokes Equations via Continuous Data Assimilation Siam Journal On Scientific Computing. 42. DOI: 10.1137/19M1248583  0.471
2020 Larios A, Yamazaki K. On the well-posedness of an anisotropically-reduced two-dimensional Kuramoto–Sivashinsky equation Physica D: Nonlinear Phenomena. 411: 132560. DOI: 10.1016/J.Physd.2020.132560  0.641
2020 Jafarzadeh S, Larios A, Bobaru F. Efficient Solutions for Nonlocal Diffusion Problems Via Boundary-Adapted Spectral Methods Journal of Peridynamics and Nonlocal Modeling. 2: 85-110. DOI: 10.1007/S42102-019-00026-6  0.345
2019 Larios A, Pei Y, Rebholz L. Global well-posedness of the velocity–vorticity-Voigt model of the 3D Navier–Stokes equations Journal of Differential Equations. 266: 2435-2465. DOI: 10.1016/J.Jde.2018.08.033  0.66
2019 Larios A, Rebholz LG, Zerfas C. Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier–Stokes equations Computer Methods in Applied Mechanics and Engineering. 345: 1077-1093. DOI: 10.1016/J.Cma.2018.09.004  0.415
2018 Biswas A, Hudson J, Larios A, Pei Y. Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields Asymptotic Analysis. 108: 1-43. DOI: 10.3233/Asy-171454  0.496
2018 Larios A, Petersen MR, Titi ES, Wingate B. A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization Theoretical and Computational Fluid Dynamics. 32: 23-34. DOI: 10.1007/S00162-017-0434-0  0.688
2017 Larios A, Pei Y. On the local well-posedness and a Prodi–Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion Journal of Differential Equations. 263: 1419-1450. DOI: 10.1016/J.Jde.2017.03.024  0.605
2017 Biswas A, Foias C, Larios A. On the attractor for the semi-dissipative Boussinesq equations Annales De L Institut Henri Poincare-Analyse Non Lineaire. 34: 381-405. DOI: 10.1016/J.Anihpc.2015.12.006  0.709
2014 Larios A, Titi ES. Higher-order global regularity of an inviscid voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations Journal of Mathematical Fluid Mechanics. 16: 59-76. DOI: 10.1007/S00021-013-0136-3  0.62
2013 Larios A, Lunasin E, Titi ES. Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion Journal of Differential Equations. 255: 2636-2654. DOI: 10.1016/J.Jde.2013.07.011  0.546
2012 Kuberry P, Larios A, Rebholz LG, Wilson NE. Numerical approximation of the Voigt regularization for incompressible Navier-Stokes and magnetohydrodynamic flows Computers and Mathematics With Applications. 64: 2647-2662. DOI: 10.1016/J.Camwa.2012.07.010  0.467
2010 Larios A, Titi ES. On the higher-order global regularity of the inviscid voigt-regularization of three-dimensional hydrodynamic models Discrete and Continuous Dynamical Systems - Series B. 14: 603-627. DOI: 10.3934/Dcdsb.2010.14.603  0.678
Show low-probability matches.