Year |
Citation |
Score |
2020 |
Demirtas H, Gao R. Mixed data generation packages and related computational tools in R Communications in Statistics - Simulation and Computation. 1-44. DOI: 10.1080/03610918.2020.1745841 |
0.311 |
|
2018 |
Demirtas H. Handbook of Fitting Statistical Distributions with R Journal of Statistical Software. 86. DOI: 10.18637/Jss.V086.B02 |
0.327 |
|
2018 |
Demirtas H. Flexible Imputation of Missing Data Journal of Statistical Software. 85: 1-5. DOI: 10.18637/Jss.V085.B04 |
0.36 |
|
2018 |
Demirtas H. Inducing Any Feasible Level of Correlation to Bivariate Data With Any Marginals The American Statistician. 73: 273-277. DOI: 10.1080/00031305.2017.1379438 |
0.388 |
|
2017 |
Hedeker D, du Toit SHC, Demirtas H, Gibbons RD. A note on marginalization of regression parameters from mixed models of binary outcomes. Biometrics. PMID 28426896 DOI: 10.1111/Biom.12707 |
0.389 |
|
2016 |
Amatya A, Demirtas H. Concurrent generation of multivariate mixed data with variables of dissimilar types. Journal of Statistical Computation and Simulation. 86: 3595-3607. PMID 27885310 DOI: 10.1080/00949655.2016.1177530 |
0.454 |
|
2016 |
Hedeker D, Mermelstein RJ, Demirtas H, Berbaum ML. A Mixed-effects Location-Scale Model for Ordinal Questionnaire Data. Health Services & Outcomes Research Methodology. 16: 117-131. PMID 27570476 DOI: 10.1007/S10742-016-0145-9 |
0.338 |
|
2016 |
Amatya A, Demirtas H. Concurrent generation of multivariate mixed data with variables of dissimilar types Journal of Statistical Computation and Simulation. 1-13. DOI: 10.1080/00949655.2016.1177530 |
0.355 |
|
2016 |
Demirtas H. A Note on the Relationship Between the Phi Coefficient and the Tetrachoric Correlation Under Nonnormal Underlying Distributions The American Statistician. 70: 143-148. DOI: 10.1080/00031305.2015.1077161 |
0.387 |
|
2016 |
Demirtas H, Ahmadian R, Atis S, Can FE, Ercan I. A nonnormal look at polychoric correlations: modeling the change in correlations before and after discretization Computational Statistics. 1-17. DOI: 10.1007/S00180-016-0653-7 |
0.375 |
|
2015 |
Demirtas H, Yavuz Y. Concurrent Generation of Ordinal and Normal Data. Journal of Biopharmaceutical Statistics. 25: 635-50. PMID 24906138 DOI: 10.1080/10543406.2014.920868 |
0.457 |
|
2015 |
Amatya A, Demirtas H. Ordnor: An R package for concurrent generation of correlated ordinal and normal data Journal of Statistical Software. 68. DOI: 10.18637/Jss.V068.C02 |
0.381 |
|
2015 |
Amatya A, Demirtas H. PoisNor: An R package for generation of multivariate data with Poisson and normal marginals Communications in Statistics - Simulation and Computation. 46: 2241-2253. DOI: 10.1080/03610918.2015.1039854 |
0.421 |
|
2015 |
Demirtas H. Concurrent generation of binary and nonnormal continuous data through fifth-order power polynomials Communications in Statistics - Simulation and Computation. 46: 344-357. DOI: 10.1080/03610918.2014.963613 |
0.452 |
|
2015 |
Amatya A, Demirtas H. MultiOrd: An R package for generating correlated ordinal data Communications in Statistics: Simulation and Computation. 44: 1683-1691. DOI: 10.1080/03610918.2013.824097 |
0.34 |
|
2015 |
Amatya A, Demirtas H. Simultaneous generation of multivariate mixed data with Poisson and normal marginals Journal of Statistical Computation and Simulation. 85: 3129-3139. DOI: 10.1080/00949655.2014.953534 |
0.438 |
|
2014 |
Helenowski IB, Demirtas H. Multiple imputation of continuous data via a semiparametric probability integral transformation. Journal of Biopharmaceutical Statistics. 24: 359-77. PMID 24605974 DOI: 10.1080/10543406.2013.860152 |
0.426 |
|
2014 |
Demirtas H. Joint Generation of Binary and Nonnormal Continuous Data Journal of Biometrics & Biostatistics. 2015. DOI: 10.4172/2155-6180.S12-001 |
0.46 |
|
2014 |
Demirtas H. Generating bivariate uniform data with a full range of correlations and connections to bivariate binary data Communications in Statistics - Theory and Methods. 43: 3574-3579. DOI: 10.1080/03610926.2012.700373 |
0.391 |
|
2014 |
Demirtas H. On accurate and precise generation of generalized Poisson variates Communications in Statistics - Simulation and Computation. 46: 489-499. DOI: 10.1080/03610918.2014.968725 |
0.397 |
|
2014 |
Demirtas H, Hedeker D. Computing the Point-biserial Correlation under Any Underlying Continuous Distribution Communications in Statistics - Simulation and Computation. 45: 2744-2751. DOI: 10.1080/03610918.2014.920883 |
0.38 |
|
2014 |
Demirtas H, Amatya A, Doganay B. BinNor: An r package for concurrent generation of binary and normal data Communications in Statistics: Simulation and Computation. 43: 569-579. DOI: 10.1080/03610918.2012.707725 |
0.353 |
|
2014 |
Helenowski IB, Demirtas H, McGee MF. A semi-parametric approach to impute mixed continuous and categorical data Health Services and Outcomes Research Methodology. 14: 183-193. DOI: 10.1007/S10742-014-0127-8 |
0.408 |
|
2013 |
Helenowski IB, Demirtas H. A semi-parametric approach for imputing mixed data Statistics and Its Interface. 6: 399-412. DOI: 10.4310/Sii.2013.V6.N3.A11 |
0.453 |
|
2012 |
Demirtas H, Hedeker D, Mermelstein RJ. Simulation of massive public health data by power polynomials. Statistics in Medicine. 31: 3337-46. PMID 22532052 DOI: 10.1002/Sim.5362 |
0.416 |
|
2012 |
Leon AC, Hedeker D, Li C, Demirtas H. Performance of a propensity score adjustment in longitudinal studies with covariate-dependent representation. Statistics in Medicine. 31: 2262-74. PMID 22495765 DOI: 10.1002/Sim.5332 |
0.382 |
|
2012 |
Hedeker D, Mermelstein RJ, Demirtas H. Modeling between-subject and within-subject variances in ecological momentary assessment data using mixed-effects location scale models. Statistics in Medicine. 31: 3328-36. PMID 22419604 DOI: 10.1002/Sim.5338 |
0.342 |
|
2012 |
Demirtas H, Doganay B. Simultaneous generation of binary and normal data with specified marginal and association structures. Journal of Biopharmaceutical Statistics. 22: 223-36. PMID 22251171 DOI: 10.1080/10543406.2010.521874 |
0.486 |
|
2011 |
Helenowski IB, Vonesh EF, Demirtas H, Rademaker AW, Ananthanarayanan V, Gann PH, Jovanovic BD. Defining reproducibility statistics as a function of the spatial covariance structures in biomarker studies International Journal of Biostatistics. 7. DOI: 10.2202/1557-4679.1128 |
0.364 |
|
2011 |
Demirtas H, Hedeker D. A practicalway for computing approximate lower and upper correlation bounds American Statistician. 65: 104-109. DOI: 10.1198/Tast.2011.10090 |
0.393 |
|
2011 |
Demirtas H, Hedeker D. Generating multivariate continuous data via the notion of nearest neighbors Journal of Applied Statistics. 38: 47-55. DOI: 10.1080/02664760903229260 |
0.446 |
|
2010 |
Yucel RM, Demirtas H. Impact of non-normal random effects on inference by multiple imputation: A simulation assessment. Computational Statistics & Data Analysis. 54: 790-801. PMID 20526424 DOI: 10.1016/J.Csda.2009.01.016 |
0.677 |
|
2010 |
Demirtas H. A distance-based rounding strategy for post-imputation ordinal data Journal of Applied Statistics. 37: 489-500. DOI: 10.1080/02664760902744954 |
0.462 |
|
2009 |
Hedeker D, Demirtas H, Mermelstein RJ. A mixed ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data. Statistics and Its Interface. 2: 391-401. PMID 20357914 DOI: 10.4310/Sii.2009.V2.N4.A1 |
0.406 |
|
2009 |
Demirtas H. Rounding strategies for multiply imputed binary data. Biometrical Journal. Biometrische Zeitschrift. 51: 677-88. PMID 19650057 DOI: 10.1002/Bimj.200900018 |
0.484 |
|
2009 |
Demirtas H. Multiple imputation under the generalized lambda distribution. Journal of Biopharmaceutical Statistics. 19: 77-89. PMID 19127468 DOI: 10.1080/10543400802527882 |
0.451 |
|
2009 |
Amatya A, Cursio J, Demirtas H, Doganay B, Morton D, Pugach O, Shi F. Accuracy versus convenience: A simulation-based comparison of two continuous imputation models for incomplete ordinal longitudinal clinical trials data Statistics and Its Interface. 2: 449-456. DOI: 10.4310/Sii.2009.V2.N4.A6 |
0.382 |
|
2009 |
Demirtas H. Multiple imputation for longitudinal data under a bayesian multilevel model Communications in Statistics - Theory and Methods. 38: 2812-2828. DOI: 10.1080/03610920902947162 |
0.403 |
|
2008 |
Demirtas H, Hedeker D. An imputation strategy for incomplete longitudinal ordinal data. Statistics in Medicine. 27: 4086-93. PMID 18338313 DOI: 10.1002/Sim.3239 |
0.378 |
|
2008 |
Hedeker D, Mermelstein RJ, Demirtas H. An application of a mixed-effects location scale model for analysis of Ecological Momentary Assessment (EMA) data. Biometrics. 64: 627-34. PMID 17970819 DOI: 10.1111/J.1541-0420.2007.00924.X |
0.374 |
|
2008 |
Demirtas H, Hedeker D. Imputing continuous data under some non-Gaussian distributions Statistica Neerlandica. 62: 193-205. DOI: 10.1111/J.1467-9574.2007.00377.X |
0.431 |
|
2008 |
Demirtas H, Freels SA, Yucel RM. Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment Journal of Statistical Computation and Simulation. 78: 69-84. DOI: 10.1080/10629360600903866 |
0.675 |
|
2008 |
Demirtas H, Hedeker D. Multiple imputation under power polynomials Communications in Statistics: Simulation and Computation. 37: 1682-1695. DOI: 10.1080/03610910802101531 |
0.429 |
|
2008 |
Demirtas H. On imputing continuous data when the eventual interest pertains to ordinalized outcomes via threshold concept Computational Statistics and Data Analysis. 52: 2261-2271. DOI: 10.1016/J.Csda.2007.09.019 |
0.452 |
|
2007 |
Leon AC, Demirtas H, Hedeker D. Bias reduction with an adjustment for participants' intent to dropout of a randomized controlled clinical trial. Clinical Trials (London, England). 4: 540-7. PMID 17942469 DOI: 10.1177/1740774507083871 |
0.358 |
|
2007 |
Hedeker D, Mermelstein RJ, Demirtas H. Analysis of binary outcomes with missing data: missing = smoking, last observation carried forward, and a little multiple imputation. Addiction (Abingdon, England). 102: 1564-73. PMID 17854333 DOI: 10.1111/J.1360-0443.2007.01946.X |
0.302 |
|
2007 |
Demirtas H, Hedeker D. Gaussianization-based quasi-imputation and expansion strategies for incomplete correlated binary responses. Statistics in Medicine. 26: 782-99. PMID 16596579 DOI: 10.1002/Sim.2560 |
0.411 |
|
2007 |
Demirtas H. Practical advice on how to impute continuous data when the ultimate interest centers on dichotomized outcomes through pre-specified thresholds Communications in Statistics: Simulation and Computation. 36: 871-889. DOI: 10.1080/03610910701418424 |
0.459 |
|
2007 |
Demirtas H, Arguelles LM, Chung H, Hedeker D. On the performance of bias-reduction techniques for variance estimation in approximate Bayesian bootstrap imputation Computational Statistics and Data Analysis. 51: 4064-4068. DOI: 10.1016/J.Csda.2006.12.047 |
0.526 |
|
2006 |
Demirtas H. A method for multivariate ordinal data generation given marginal distributions and correlations Journal of Statistical Computation and Simulation. 76: 1017-1025. DOI: 10.1080/10629360600569246 |
0.413 |
|
2005 |
Demirtas H. Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out. Statistics in Medicine. 24: 2345-63. PMID 15977286 DOI: 10.1002/Sim.2117 |
0.399 |
|
2005 |
Demirtas H. Bayesian analysis of hierarchical pattern-mixture models for clinical trials data with attrition and comparisons to commonly used ad-hoc and model-based approaches. Journal of Biopharmaceutical Statistics. 15: 383-402. PMID 15920887 DOI: 10.1081/Bip-200056511 |
0.404 |
|
2005 |
Demirtas H. JMASM16: Pseudo-random number generation in R for some univariate distributions Journal of Modern Applied Statistical Methods. 4: 300-311. DOI: 10.22237/Jmasm/1114907220 |
0.357 |
|
2004 |
Demirtas H. Assessment of relative improvement due to weights within generalized estimating equations framework for incomplete clinical trials data. Journal of Biopharmaceutical Statistics. 14: 1085-98. PMID 15587981 DOI: 10.1081/Bip-200035493 |
0.357 |
|
2004 |
Demirtas H. Pseudo-random number generation in R for commonly used multivariate distributions Journal of Modern Applied Statistical Methods. 3: 485-497. DOI: 10.22237/Jmasm/1099268340 |
0.351 |
|
2004 |
Demirtas H. Modeling incomplete longitudinal data Journal of Modern Applied Statistical Methods. 3: 305-321. DOI: 10.22237/Jmasm/1099267500 |
0.372 |
|
2004 |
Demirtas H. Simulation driven inferences for multiply imputed longitudinal datasets Statistica Neerlandica. 58: 466-482. DOI: 10.1111/J.1467-9574.2004.00271.X |
0.425 |
|
2003 |
Demirtas H, Schafer JL. On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Statistics in Medicine. 22: 2553-75. PMID 12898544 DOI: 10.1002/Sim.1475 |
0.675 |
|
Show low-probability matches. |