# Padhraic Smyth - Publications

## Affiliations: | University of California, Irvine, Irvine, CA |

##### Area:

Computer Science, StatisticsYear | Citation | Score | |||
---|---|---|---|---|---|

2015 | Holsclaw T, Hallgren KA, Steyvers M, Smyth P, Atkins DC. Measurement Error and Outcome Distributions: Methodological Issues in Regression Analyses of Behavioral Coding Data. Psychology of Addictive Behaviors : Journal of the Society of Psychologists in Addictive Behaviors. PMID 26098126 DOI: 10.1037/adb0000091 |
1 | |||

2014 | Salmans ML, Yu Z, Watanabe K, Cam E, Sun P, Smyth P, Dai X, Andersen B. The co-factor of LIM domains (CLIM/LDB/NLI) maintains basal mammary epithelial stem cells and promotes breast tumorigenesis. Plos Genetics. 10: e1004520. PMID 25079073 DOI: 10.1371/journal.pgen.1004520 |
1 | |||

2014 | Atkins DC, Steyvers M, Imel ZE, Smyth P. Scaling up the evaluation of psychotherapy: evaluating motivational interviewing fidelity via statistical text classification. Implementation Science : Is. 9: 49. PMID 24758152 DOI: 10.1186/1748-5908-9-49 |
1 | |||

2012 | Geyfman M, Kumar V, Liu Q, Ruiz R, Gordon W, Espitia F, Cam E, Millar SE, Smyth P, Ihler A, Takahashi JS, Andersen B. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proceedings of the National Academy of Sciences of the United States of America. 109: 11758-63. PMID 22753467 DOI: 10.1073/pnas.1209592109 |
1 | |||

2011 | Steyvers M, Smyth P, Chemuduganta C. Combining background knowledge and learned topics. Topics in Cognitive Science. 3: 18-47. PMID 25164174 DOI: 10.1111/j.1756-8765.2010.01097.x |
1 | |||

2010 | Liu Q, Lin KK, Andersen B, Smyth P, Ihler A. Estimating replicate time shifts using Gaussian process regression. Bioinformatics (Oxford, England). 26: 770-6. PMID 20147305 DOI: 10.1093/bioinformatics/btq022 |
1 | |||

2010 | DuBois C, Smyth P. Modeling relational events via latent classes Proceedings of the Acm Sigkdd International Conference On Knowledge Discovery and Data Mining. 803-812. DOI: 10.1145/1835804.1835906 |
1 | |||

2010 | Smyth P, Elkan C. Technical perspective Creativity helps influence prediction precision Communications of the Acm. 53: 88. DOI: 10.1145/1721654.1721678 |
1 | |||

2009 | Chudova D, Ihler A, Lin KK, Andersen B, Smyth P. Bayesian detection of non-sinusoidal periodic patterns in circadian expression data. Bioinformatics (Oxford, England). 25: 3114-20. PMID 19773336 DOI: 10.1093/bioinformatics/btp547 |
1 | |||

2009 | Lin KK, Kumar V, Geyfman M, Chudova D, Ihler AT, Smyth P, Paus R, Takahashi JS, Andersen B. Circadian clock genes contribute to the regulation of hair follicle cycling. Plos Genetics. 5: e1000573. PMID 19629164 DOI: 10.1371/journal.pgen.1000573 |
1 | |||

2008 | Friedman L, Stern H, Brown GG, Mathalon DH, Turner J, Glover GH, Gollub RL, Lauriello J, Lim KO, Cannon T, Greve DN, Bockholt HJ, Belger A, Mueller B, Doty MJ, ... ... Smyth P, et al. Test-retest and between-site reliability in a multicenter fMRI study. Human Brain Mapping. 29: 958-72. PMID 17636563 DOI: 10.1002/hbm.20440 |
1 | |||

2008 | Smyth P, Kirshner S. Comment on article by Rydén Bayesian Analysis. 3: 699-706. DOI: 10.1214/08-BA326B |
1 | |||

2007 | Kirshner S, Smyth P. Infinite mixtures of trees Acm International Conference Proceeding Series. 227: 417-423. DOI: 10.1145/1273496.1273549 |
1 | |||

2007 | Kim S, Smyth P. Hierarchical Dirichlet processes with random effects Advances in Neural Information Processing Systems. 697-704. |
1 | |||

2006 | Turner JA, Smyth P, Macciardi F, Fallon JH, Kennedy JL, Potkin SG. Imaging phenotypes and genotypes in schizophrenia. Neuroinformatics. 4: 21-49. PMID 16595857 DOI: 10.1385/NI:4:1:21 |
1 | |||

2006 | Kim S, Smyth P. Segmental hidden Markov models with random effects for waveform modeling Journal of Machine Learning Research. 7: 945-969. DOI: 10.1109/JSSC.2006.870744 |
1 | |||

2006 | Smyth P. Data-driven discovery using probabilistic hidden variable models Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 4264: 28. |
1 | |||

2005 | White S, Smyth P. A spectral clustering approach to finding communities in graphs Proceedings of the 2005 Siam International Conference On Data Mining, Sdm 2005. 274-285. |
1 | |||

2004 | Lin KK, Chudova D, Hatfield GW, Smyth P, Andersen B. Identification of hair cycle-associated genes from time-course gene expression profile data by using replicate variance. Proceedings of the National Academy of Sciences of the United States of America. 101: 15955-60. PMID 15520371 DOI: 10.1073/pnas.0407114101 |
1 | |||

2003 | Chudova D, Smyth P. Analysis of Pattern Discovery in Sequences Using a Bayes Error Framework Data Mining and Knowledge Discovery. 7: 273-299. DOI: 10.1023/A:1024032204965 |
1 | |||

2002 | Smyth P. Learning with mixture models: Concepts and applications Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2430: 529. |
1 | |||

2002 | Chudova D, Smyth P. Pattern discovery in sequences under a Markov assumption Proceedings of the Acm Sigkdd International Conference On Knowledge Discovery and Data Mining. 153-162. |
1 | |||

2001 | Cadez IV, Smyth P. Model complexity, goodness of fit and diminishing returns Advances in Neural Information Processing Systems. |
1 | |||

2001 | Pavlov D, Smyth P. Probabilistic query models for transaction data Proceedings of the Seventh Acm Sigkdd International Conference On Knowledge Discovery and Data Mining. 164-173. |
1 | |||

2000 | Smyth P. Data mining: Data analysis on a grand scale? Statistical Methods in Medical Research. 9: 309-327. PMID 11084711 |
1 | |||

2000 | Smyth P. Model selection for probabilistic clustering using cross-validated likelihood Statistics and Computing. 10: 63-72. |
1 | |||

2000 | Cadez IV, Smyth P. On model selection and concavity for finite mixture models Ieee International Symposium On Information Theory - Proceedings. 323. |
1 | |||

2000 | Ge X, Smyth P. Deformable Markov model templates for time-series pattern matching Proceeding of the Sixth Acm Sigkdd International Conference On Knowledge Discovery and Data Mining. 81-90. |
1 | |||

1998 | Smyth P, Wolpert D. Stacked density estimation Advances in Neural Information Processing Systems. 668-674. |
1 | |||

1997 | Smyth P. Belief networks, hidden Markov models, and Markov random fields: A unifying view Pattern Recognition Letters. 18: 1261-1268. |
1 | |||

1997 | Smyth P. Clustering sequences with hidden Markov models Advances in Neural Information Processing Systems. 648-654. |
1 | |||

1996 | Smyth P. Bounds on the mean classification error rate of multiple experts Pattern Recognition Letters. 17: 1253-1257. DOI: 10.1016/0167-8655(96)00105-5 |
1 | |||

1994 | Smyth P. Markov Monitoring with Unknown States Ieee Journal On Selected Areas in Communications. 12: 1600-1612. DOI: 10.1109/49.339929 |
1 | |||

1994 | Smyth P. Hidden Markov models for fault detection in dynamic systems Pattern Recognition. 27: 149-164. DOI: 10.1016/0031-3203(94)90024-8 |
1 | |||

1992 | Smyth P, Goodman RM. An Information Theoretic Approach To Rule Induction From Databases Ieee Transactions On Knowledge and Data Engineering. 4: 301-316. DOI: 10.1109/69.149926 |
1 | |||

1992 | Smyth P. Admissible stochastic complexity models for classification problems Statistics and Computing. 2: 97-104. DOI: 10.1007/BF01889588 |
1 | |||

1990 | Goodman RM, Smyth P. Decision tree design using information theory Knowledge Acquisition. 2: 1-19. DOI: 10.1016/S1042-8143(05)80020-2 |
1 | |||

1988 | Goodman RM, Smyth P. Decision Tree Design from a Communication Theory Standpoint Ieee Transactions On Information Theory. 34: 979-994. DOI: 10.1109/18.21221 |
1 | |||

Show low-probability matches. |