Year |
Citation |
Score |
2019 |
Agresti A, Kateri M. The class of CUB models: statistical foundations, inferential issues and empirical evidence Statistical Methods and Applications. 28: 445-449. DOI: 10.1007/S10260-019-00468-8 |
0.386 |
|
2018 |
Agresti A, Tarantola C. Simple ways to interpret effects in modeling ordinal categorical data Statistica Neerlandica. 72: 210-223. DOI: 10.1111/Stan.12130 |
0.388 |
|
2017 |
Agresti A, Kateri M. Ordinal probability effect measures for group comparisons in multinomial cumulative link models. Biometrics. 73: 214-219. PMID 27438478 DOI: 10.1111/Biom.12565 |
0.392 |
|
2014 |
Agresti A, Kateri M. Some Remarks on Latent Variable Models in Categorical Data Analysis Communications in Statistics-Theory and Methods. 43: 801-814. DOI: 10.1080/03610926.2013.814783 |
0.396 |
|
2013 |
Touloumis A, Agresti A, Kateri M. GEE for multinomial responses using a local odds ratios parameterization. Biometrics. 69: 633-40. PMID 23724948 DOI: 10.1111/Biom.12054 |
0.774 |
|
2013 |
Kateri M, Agresti A. Bayesian inference about odds ratio structure in ordinal contingency tables Environmetrics. 24: 281-288. DOI: 10.1002/Env.2202 |
0.447 |
|
2011 |
Agresti A. Score and Pseudo-Score Confidence Intervals for Categorical Data Analysis Statistics in Biopharmaceutical Research. 3: 163-172. DOI: 10.1198/Sbr.2010.09053 |
0.506 |
|
2010 |
Gottard A, Marchetti GM, Agresti A. Quasi-Symmetric Graphical Log-Linear Models Scandinavian Journal of Statistics. 38: 447-465. DOI: 10.1111/J.1467-9469.2010.00713.X |
0.439 |
|
2010 |
Agresti A, Ryu E. Pseudo-score confidence intervals for parameters in discrete statistical models Biometrika. 97: 215-222. DOI: 10.1093/Biomet/Asp074 |
0.69 |
|
2010 |
Kateri M, Agresti A. A generalized regression model for a binary response Statistics & Probability Letters. 80: 89-95. DOI: 10.1016/J.Spl.2009.09.016 |
0.412 |
|
2008 |
Agresti A, Bini M, Bertaccini B, Ryu E. Simultaneous confidence intervals for comparing binomial parameters. Biometrics. 64: 1270-5. PMID 18266891 DOI: 10.1111/J.1541-0420.2008.00990.X |
0.669 |
|
2008 |
Ryu E, Agresti A. Modeling and inference for an ordinal effect size measure. Statistics in Medicine. 27: 1703-17. PMID 17918752 DOI: 10.1002/Sim.3079 |
0.663 |
|
2008 |
Agresti A, Min Y. The authors replied as follow Biometrics. 64: 1295-1296. DOI: 10.1111/J.1541-0420.2008.01134_2.X |
0.715 |
|
2007 |
Kateri M, Agresti A. A class of ordinal quasi-symmetry models for square contingency tables Statistics & Probability Letters. 77: 598-603. DOI: 10.1016/J.Spl.2006.09.015 |
0.384 |
|
2007 |
Agresti A, Gottard A. Independence in multi-way contingency tables: S.N. Roy's breakthroughs and later developments Journal of Statistical Planning and Inference. 137: 3216-3226. DOI: 10.1016/J.Jspi.2007.03.006 |
0.385 |
|
2007 |
Agresti A, Gottard A. Nonconservative exact small-sample inference for discrete data Computational Statistics & Data Analysis. 51: 6447-6458. DOI: 10.1016/J.Csda.2007.02.024 |
0.44 |
|
2006 |
Klingenberg B, Agresti A. Multivariate extensions of McNemar's test. Biometrics. 62: 921-8. PMID 16984337 DOI: 10.1111/J.1541-0420.2006.00525.X |
0.774 |
|
2005 |
Agresti A, Min Y. Frequentist performance of Bayesian confidence intervals for comparing proportions in 2 × 2 contingency tables Biometrics. 61. PMID 16011699 DOI: 10.1111/J.1541-0420.2005.031228.X |
0.776 |
|
2005 |
Agresti A, Min Y. Simple improved confidence intervals for comparing matched proportions Statistics in Medicine. 24: 729-740. PMID 15696504 DOI: 10.1002/Sim.1781 |
0.787 |
|
2005 |
Agresti A, Gottard A. Comment: Randomized Confidence Intervals and the Mid-P Approach Statistical Science. 20: 367-371. DOI: 10.1214/088342305000000403 |
0.419 |
|
2005 |
Min Y, Agresti A. Random effect models for repeated measures of zero-inflated count data Statistical Modelling. 5: 1-19. DOI: 10.1191/1471082X05St084Oa |
0.786 |
|
2005 |
Agresti A, Klingenberg B. Multivariate tests comparing binomial probabilities, with application to safety studies for drugs Journal of the Royal Statistical Society Series C-Applied Statistics. 54: 691-706. DOI: 10.1111/J.1467-9876.2005.05437.X |
0.758 |
|
2005 |
Agresti A, Hitchcock DB. Bayesian inference for categorical data analysis Statistical Methods and Applications. 14: 297-330. DOI: 10.1007/S10260-005-0121-Y |
0.478 |
|
2005 |
Liu I, Agresti A. The analysis of ordered categorical data: An overview and a survey of recent developments Test. 14: 1-73. DOI: 10.1007/Bf02595397 |
0.429 |
|
2004 |
Agresti A, Min Y. Effects and non-effects of paired identical observations in comparing proportions with binary matched-pairs data Statistics in Medicine. 23: 65-75. PMID 14695640 DOI: 10.1002/Sim.1589 |
0.767 |
|
2004 |
Agresti A, Caffo B, Ohman-Strickland P. Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies Computational Statistics and Data Analysis. 47: 639-653. DOI: 10.1016/J.Csda.2003.12.009 |
0.4 |
|
2003 |
Agresti A. Dealing with discreteness: making `exact’ confidence intervals for proportions, differences of proportions, and odds ratios more exact Statistical Methods in Medical Research. 12: 3-21. PMID 12617505 DOI: 10.1191/0962280203Sm311Ra |
0.509 |
|
2003 |
Coull BA, Agresti A. Generalized log-linear models with random effects, with application to smoothing contingency tables Statistical Modelling: An International Journal. 3: 251-271. DOI: 10.1191/1471082X03St059Oa |
0.551 |
|
2002 |
Agresti A, Min Y. Unconditional small-sample confidence intervals for the odds ratio. Biostatistics (Oxford, England). 3: 379-86. PMID 12933604 DOI: 10.1093/Biostatistics/3.3.379 |
0.771 |
|
2002 |
Agresti A. Links between binary and multi-category logit item response models and quasi-symmetric loglinear models Annales De La Faculté Des Sciences De Toulouse. 11: 443-454. DOI: 10.5802/Afst.1032 |
0.438 |
|
2002 |
Agresti A, Coull BA. The analysis of contingency tables under inequality constraint Journal of Statistical Planning and Inference. 107: 45-73. DOI: 10.1016/S0378-3758(02)00243-4 |
0.567 |
|
2002 |
Agresti A, Caffo B. Measures of relative model fit Computational Statistics and Data Analysis. 39: 127-136. DOI: 10.1016/S0167-9473(01)00054-8 |
0.447 |
|
2001 |
Agresti A, Min Y. On small-sample confidence intervals for parameters in discrete distributions Biometrics. 57: 963-971. PMID 11550951 DOI: 10.1111/J.0006-341X.2001.00963.X |
0.785 |
|
2001 |
Agresti A. Exact inference for categorical data: recent advances and continuing controversies Statistics in Medicine. 20: 2709-2722. PMID 11523078 DOI: 10.1002/Sim.738 |
0.408 |
|
2001 |
Gueorguieva RV, Agresti A. A Correlated Probit Model for Joint Modeling of Clustered Binary and Continuous Responses Journal of the American Statistical Association. 96: 1102-1112. DOI: 10.1198/016214501753208762 |
0.411 |
|
2001 |
Hartzel J, Agresti A, Caffo B. Multinomial logit random effects models Statistical Modelling: An International Journal. 1: 81-102. DOI: 10.1177/1471082X0100100201 |
0.449 |
|
2001 |
Agresti A, Liu IVY. Strategies for Modeling a Categorical Variable Allowing Multiple Category Choices Sociological Methods & Research. 29: 403-434. DOI: 10.1177/0049124101029004001 |
0.422 |
|
2001 |
Agresti A, Natarajan R. Modeling clustered ordered categorical data: A survey International Statistical Review. 69: 345-371. DOI: 10.1111/J.1751-5823.2001.Tb00463.X |
0.32 |
|
2001 |
Hartzel J, Liu I, Agresti A. Describing heterogeneous effects in stratified ordinal contingency tables, with application to multi-center clinical trials Computational Statistics & Data Analysis. 35: 429-449. DOI: 10.1016/S0167-9473(00)00020-7 |
0.471 |
|
2000 |
Zheng B, Agresti A. Summarizing the predictive power of a generalized linear model. Statistics in Medicine. 19: 1771-1781. PMID 10861777 DOI: 10.1002/1097-0258(20000715)19:13<1771::Aid-Sim485>3.0.Co;2-P |
0.413 |
|
2000 |
Agresti A, Hartzel J. Strategies for comparing treatments on a binary response with multi-centre data. Statistics in Medicine. 19: 1115-1139. PMID 10790684 DOI: 10.1002/(Sici)1097-0258(20000430)19:8<1115::Aid-Sim408>3.0.Co;2-X |
0.327 |
|
2000 |
Coull BA, Agresti A. Random effects modeling of multiple binomial responses using the multivariate binomial logit-normal distribution Biometrics. 56: 73-80. PMID 10783779 DOI: 10.1111/J.0006-341X.2000.00073.X |
0.588 |
|
2000 |
Agresti A, Booth JG, Hobert JP, Caffo B. Random-effects modeling of categorical response data Sociological Methodology. 30: 27-80. DOI: 10.1111/0081-1750.T01-1-00075 |
0.425 |
|
2000 |
Agresti A, Caffo B. Simple and Effective Confidence Intervals for Proportions and Differences of Proportions Result from Adding Two Successes and Two Failures The American Statistician. 54: 280-288. DOI: 10.1080/00031305.2000.10474560 |
0.461 |
|
2000 |
Ghosh M, Ghosh A, Chen M, Agresti A. Noninformative priors for one-parameter item response models Journal of Statistical Planning and Inference. 88: 99-115. DOI: 10.1016/S0378-3758(99)00201-3 |
0.416 |
|
1999 |
Agresti A. On logit confidence intervals for the odds ratio with small samples. Biometrics. 55: 597-602. PMID 11318220 DOI: 10.1111/J.0006-341X.1999.00597.X |
0.484 |
|
1999 |
Coull BA, Agresti A. The use of mixed logit models to reflect heterogeneity in capture- recapture studies Biometrics. 55: 294-301. PMID 11318172 DOI: 10.1111/J.0006-341X.1999.00294.X |
0.575 |
|
1999 |
Agresti A, Liu I. Modeling a categorical variable allowing arbitrarily many category choices. Biometrics. 55: 936-943. PMID 11315032 DOI: 10.1111/J.0006-341X.1999.00936.X |
0.4 |
|
1999 |
Agresti A. Modelling ordered categorical data: recent advances and future challenges. Statistics in Medicine. 18: 2191-2207. PMID 10474133 DOI: 10.1002/(Sici)1097-0258(19990915/30)18:17/18<2191::Aid-Sim249>3.0.Co;2-M |
0.398 |
|
1998 |
Agresti A, Coull BA. An empirical comparison of inference using order-restricted and linear logit models for a binary response Communications in Statistics - Simulation and Computation. 27: 147-166. DOI: 10.1080/03610919808813472 |
0.469 |
|
1998 |
Agresti A, Coull BA. Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions The American Statistician. 52: 119-126. DOI: 10.1080/00031305.1998.10480550 |
0.446 |
|
1998 |
Agresti A, Coull BA. Order-restricted inference for monotone trend alternatives in contigency tables Computational Statistics & Data Analysis. 28: 139-155. DOI: 10.1016/S0167-9473(98)00035-8 |
0.509 |
|
1997 |
Chuang-Stein C, Agresti A. Tutorial in Biostatistics A review of tests for detecting a monotone dose–response relationship with ordinal response data Statistics in Medicine. 16: 2599-2618. PMID 9403959 DOI: 10.1002/(Sici)1097-0258(19971130)16:22<2599::Aid-Sim734>3.0.Co;2-9 |
0.405 |
|
1997 |
Agresti A. A Model for Repeated Measurements of a Multivariate Binary Response Journal of the American Statistical Association. 92: 315-321. DOI: 10.1080/01621459.1997.10473629 |
0.457 |
|
1997 |
Kim D, Agresti A. Nearly exact tests of conditional independence and marginal homogeneity for sparse contingency tables Computational Statistics & Data Analysis. 24: 89-104. DOI: 10.1016/S0167-9473(96)00038-2 |
0.467 |
|
1997 |
Chuang‐Stein C, Agresti A. A review of tests for detecting a monotone dose-response relationship with ordinal response data. Statistics in Medicine. 16: 2599-2618. DOI: 10.1002/0470023678.Ch3C(Iii) |
0.393 |
|
1996 |
Liu IM, Agresti A. Mantel-Haenszel-type inference for cumulative odds ratios with a stratified ordinal response Biometrics. 52: 1223-1234. PMID 8962452 DOI: 10.2307/2532838 |
0.447 |
|
1996 |
Agresti A, Coull BA. Order-Restricted Tests for Stratified Comparisons of Binomial Proportions Biometrics. 52: 1103-1111. DOI: 10.2307/2533072 |
0.434 |
|
1995 |
Agresti A. Logit Models and Related Quasi-Symmetric Log-Linear Models for Comparing Responses to Similar Items in a Survey: Sociological Methods & Research. 24: 68-95. DOI: 10.1177/0049124195024001004 |
0.449 |
|
1995 |
Kim D, Agresti A. Improved Exact Inference about Conditional Association in Three-Way Contingency Tables Journal of the American Statistical Association. 90: 632-639. DOI: 10.1080/01621459.1995.10476557 |
0.457 |
|
1995 |
Agresti A, Ghosh A, Bini M. Raking Kappa: Describing Potential Impact of Marginal Distributions on Measures of Agreement Biometrical Journal. 37: 811-820. DOI: 10.1002/Bimj.4710370705 |
0.333 |
|
1994 |
Agresti A. Simple capture-recapture models permitting unequal catchability and variable sampling effort. Biometrics. 50: 494-500. DOI: 10.2307/2533391 |
0.464 |
|
1994 |
Lang JB, Agresti A. Simultaneously modeling joint and marginal distributions of multivariate categorical responses Journal of the American Statistical Association. 89: 625-632. DOI: 10.1080/01621459.1994.10476787 |
0.459 |
|
1993 |
Agresti A. Distribution-free fitting of logit models with random effects for repeated categorical responses. Statistics in Medicine. 12: 1969-1987. PMID 8296108 DOI: 10.1002/Sim.4780122102 |
0.513 |
|
1993 |
Agresti A, Lang JB. Quasi-symmetric latent class models, with application to rater agreement Biometrics. 49: 131-139. DOI: 10.2307/2532608 |
0.426 |
|
1993 |
Agresti A, Lang JB. A proportional odds model with subject-specific effects for repeated ordered categorical responses Biometrika. 80: 527-534. DOI: 10.1093/Biomet/80.3.527 |
0.459 |
|
1993 |
Agresti A, Lang JB, Mehta C. Some empirical comparisons of exact, modified exact, and higher-order asymptotic tests of independence for ordered categorical variables Communications in Statistics - Simulation and Computation. 22: 1-18. DOI: 10.1080/03610919308813078 |
0.427 |
|
1993 |
Agresti A. Categorical data analysis Contemporary Sociology. 22: 459. DOI: 10.1002/0471249688 |
0.493 |
|
1992 |
Becker MP, Agresti A. Log-linear modelling of pairwise interobserver agreement on a categorical scale. Statistics in Medicine. 11: 101-114. PMID 1557566 DOI: 10.1002/Sim.4780110109 |
0.439 |
|
1992 |
Agresti A. Modelling patterns of agreement and disagreement. Statistical Methods in Medical Research. 1: 201-218. PMID 1341658 DOI: 10.1177/096228029200100205 |
0.403 |
|
1992 |
Agresti A. Analysis of Ordinal Paired Comparison Data Applied Statistics. 41: 287-297. DOI: 10.2307/2347562 |
0.305 |
|
1992 |
Agresti A. [A Survey of Exact Inference for Contingency Tables]: Rejoinder Statistical Science. 7: 173-177. DOI: 10.1214/Ss/1177011462 |
0.321 |
|
1992 |
Agresti A. A Survey of Exact Inference for Contingency Tables Statistical Science. 7: 131-153. DOI: 10.1214/Ss/1177011454 |
0.424 |
|
1992 |
Agresti A, Lipsitz S, Lang JB. Comparing marginal distributions of large, sparse contingency tables Computational Statistics and Data Analysis. 14: 55-73. DOI: 10.1016/0167-9473(92)90081-P |
0.494 |
|
1990 |
Agresti A, Mehta CR, Patel NR. Exact inference for contingency tables with ordered categories Journal of the American Statistical Association. 85: 453-458. DOI: 10.1080/01621459.1990.10476220 |
0.448 |
|
1989 |
Agresti A. A survey of models for repeated ordered categorical response data. Statistics in Medicine. 8: 1209-1224. PMID 2814070 DOI: 10.1002/Sim.4780081005 |
0.431 |
|
1989 |
Agresti A. Tutorial on modeling ordered categorical response data. Psychological Bulletin. 105: 290-301. PMID 2648444 DOI: 10.1037/0033-2909.105.2.290 |
0.393 |
|
1989 |
Agresti A. Mathematical and computer modelling reports: A model for agreement between ratings on an ordinal scale Mathematical and Computer Modelling. 12: 1188. DOI: 10.1016/0895-7177(89)90272-0 |
0.419 |
|
1989 |
Agresti A, Chuang C. Model-based Bayesian methods for estimating cell proportions in cross-classification tables having ordered categories Computational Statistics & Data Analysis. 7: 245-258. DOI: 10.1016/0167-9473(89)90025-X |
0.468 |
|
1989 |
Agresti A. An agreement model with kappa as parameter Statistics & Probability Letters. 7: 271-273. DOI: 10.1016/0167-7152(89)90104-1 |
0.346 |
|
1987 |
Agresti A, Chuang C, Kezouh A. Order-Restricted Score Parameters in Association Models for Contingency Tables Journal of the American Statistical Association. 82: 619-623. DOI: 10.1080/01621459.1987.10478474 |
0.468 |
|
1987 |
Agresti A, Yang MC. An empirical investigation of some effects of sparseness in contingency tables Computational Statistics & Data Analysis. 5: 9-21. DOI: 10.1016/0167-9473(87)90003-X |
0.508 |
|
1987 |
Agresti A, Schollenberger J, Wackerly D. Models for the probability of concordance in cross-classification tables Quality & Quantity. 21: 49-57. DOI: 10.1007/Bf00221714 |
0.415 |
|
1986 |
Chuang C, Agresti A. A new model for ordinal pain data from a pharmaceutical study Statistics in Medicine. 5: 15-20. PMID 3515474 DOI: 10.1002/Sim.4780050104 |
0.388 |
|
1986 |
Agresti A. Applying R 2 -Type measures to ordered categorical data Technometrics. 28: 133-138. DOI: 10.2307/1270449 |
0.328 |
|
1986 |
Agresti A, Pendergast J. Comparing mean ranks for repeated measures data Communications in Statistics-Theory and Methods. 15: 1417-1433. DOI: 10.1080/03610928608829193 |
0.452 |
|
1984 |
Morey LC, Agresti A. The Measurement of Classification Agreement: An Adjustment to the Rand Statistic for Chance Agreement Educational and Psychological Measurement. 44: 33-37. DOI: 10.1177/0013164484441003 |
0.343 |
|
1983 |
Agresti A. Testing Marginal Homogeneity for Ordinal Categorical Variables Biometrics. 39: 505. DOI: 10.2307/2531022 |
0.325 |
|
1983 |
Agresti A, Kezouh A. Association Models for Multi-Dimensional Cross-Classifications of Ordinal Variables Communications in Statistics-Theory and Methods. 12: 1261-1276. DOI: 10.1080/03610928308828530 |
0.388 |
|
1983 |
Agresti A. A Survey of Strategies for Modeling Cross-Classifications Having Ordinal Variables Journal of the American Statistical Association. 78: 184-198. DOI: 10.1080/01621459.1983.10477950 |
0.349 |
|
1983 |
Agresti A. A simple diagonals-parameter symmetry and quasi-symmetry model Statistics & Probability Letters. 1: 313-316. DOI: 10.1016/0167-7152(83)90051-2 |
0.432 |
|
1981 |
Agresti A. A Hierarchical System of Interaction Measures for Multidimensional Contingency Tables Journal of the Royal Statistical Society Series B-Methodological. 43: 293-301. DOI: 10.1111/J.2517-6161.1981.Tb01674.X |
0.305 |
|
1981 |
Agresti A. Measures of Nominal-Ordinal Association Journal of the American Statistical Association. 76: 524-529. DOI: 10.1080/01621459.1981.10477679 |
0.392 |
|
1980 |
Agresti A. Generalized Odds Ratios for Ordinal Data Biometrics. 36: 59. DOI: 10.2307/2530495 |
0.4 |
|
1979 |
Agresti A, Wackerly D, Boyett JM. Exact conditional tests for cross-classifications: Approximation of attained significance levels Psychometrika. 44: 75-83. DOI: 10.1007/Bf02293786 |
0.388 |
|
1977 |
Agresti A. A coefficient of multiple association based on ranks Communications in Statistics-Theory and Methods. 6: 1341-1359. DOI: 10.1080/03610927708827577 |
0.367 |
|
1977 |
Agresti A. Considerations in Measuring Partial Association for Ordinal Categorical Data Journal of the American Statistical Association. 72: 37-45. DOI: 10.1080/01621459.1977.10479904 |
0.358 |
|
1977 |
Agresti A, Wackerly D. Some exact conditional tests of independence forR ×C cross-classification tables Psychometrika. 42: 111-125. DOI: 10.1007/Bf02293748 |
0.423 |
|
1976 |
Agresti A. The Effect of Category Choice on Some Ordinal Measures of Association Journal of the American Statistical Association. 71: 49-55. DOI: 10.1080/01621459.1976.10481475 |
0.319 |
|
Show low-probability matches. |