Year |
Citation |
Score |
2023 |
Johnson JM, Khoshgoftaar TM. Data-Centric AI for Healthcare Fraud Detection. Sn Computer Science. 4: 389. PMID 37200563 DOI: 10.1007/s42979-023-01809-x |
0.346 |
|
2020 |
Leevy JL, Khoshgoftaar TM, Villanustre F. Survey on RNN and CRF models for de-identification of medical free text Journal of Big Data. 7: 1-22. DOI: 10.1186/S40537-020-00351-4 |
0.369 |
|
2020 |
Hancock JT, Khoshgoftaar TM. Survey on categorical data for neural networks Journal of Big Data. 7. DOI: 10.1186/S40537-020-00305-W |
0.354 |
|
2020 |
Hasanin T, Khoshgoftaar TM, Leevy JL, Bauder RA. Investigating class rarity in big data Journal of Big Data. 7. DOI: 10.1186/S40537-020-00301-0 |
0.401 |
|
2020 |
Johnson JM, Khoshgoftaar TM. The Effects of Data Sampling with Deep Learning and Highly Imbalanced Big Data Information Systems Frontiers. 1-19. DOI: 10.1007/S10796-020-10022-7 |
0.417 |
|
2019 |
Herrera VM, Khoshgoftaar TM, Villanustre F, Furht B. Random forest implementation and optimization for Big Data analytics on LexisNexis’s high performance computing cluster platform Journal of Big Data. 6. DOI: 10.1186/S40537-019-0232-1 |
0.372 |
|
2019 |
Calvert CL, Khoshgoftaar TM. Impact of class distribution on the detection of slow HTTP DoS attacks using Big Data Journal of Big Data. 6. DOI: 10.1186/S40537-019-0230-3 |
0.369 |
|
2019 |
Johnson JM, Khoshgoftaar TM. Medicare fraud detection using neural networks Journal of Big Data. 6. DOI: 10.1186/S40537-019-0225-0 |
0.421 |
|
2019 |
Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbalance Journal of Big Data. 6. DOI: 10.1186/S40537-019-0192-5 |
0.395 |
|
2019 |
Kennedy RKL, Khoshgoftaar TM, Villanustre F, Humphrey T. A parallel and distributed stochastic gradient descent implementation using commodity clusters Journal of Big Data. 6. DOI: 10.1186/S40537-019-0179-2 |
0.323 |
|
2018 |
Herland M, Bauder RA, Khoshgoftaar TM. Approaches for identifying U.S. medicare fraud in provider claims data. Health Care Management Science. PMID 30368641 DOI: 10.1007/S10729-018-9460-8 |
0.388 |
|
2018 |
Sohangir S, Wang D, Pomeranets A, Khoshgoftaar TM. Big Data: Deep Learning for financial sentiment analysis Journal of Big Data. 5. DOI: 10.1186/S40537-017-0111-6 |
0.356 |
|
2017 |
Najafabadi MM, Khoshgoftaar TM, Villanustre F, Holt J. Large-scale distributed L-BFGS Journal of Big Data. 4. DOI: 10.1186/S40537-017-0084-5 |
0.335 |
|
2016 |
Carryl C, Alhalabi B, Khoshgoftaar TM, Bullard L. Verifying the Security Characteristics of a Secure Physical Access Control Protocol International Journal of Reliability, Quality and Safety Engineering. 23. DOI: 10.1142/S0218539316500066 |
0.744 |
|
2016 |
Najafabadi MM, Khoshgoftaar TM, Napolitano A. Detecting Network Attacks Based on Behavioral Commonalities International Journal of Reliability, Quality and Safety Engineering. 23. DOI: 10.1142/S0218539316500054 |
0.534 |
|
2016 |
Najafabadi MM, Khoshgoftaar TM, Seliya N. Evaluating Feature Selection Methods for Network Intrusion Detection with Kyoto Data International Journal of Reliability, Quality and Safety Engineering. DOI: 10.1142/S0218539316500017 |
0.717 |
|
2016 |
Prusa J, Khoshgoftaar TM, Seliya N. The effect of dataset size on training tweet sentiment classifiers Proceedings - 2015 Ieee 14th International Conference On Machine Learning and Applications, Icmla 2015. 96-102. DOI: 10.1109/ICMLA.2015.22 |
0.664 |
|
2016 |
Bauder R, Khoshgoftaar TM, Seliya N. A survey on the state of healthcare upcoding fraud analysis and detection Health Services and Outcomes Research Methodology. 17: 31-55. DOI: 10.1007/S10742-016-0154-8 |
0.667 |
|
2015 |
Wang H, Khoshgoftaar TM, Napolitano A. Stability of three forms of feature selection methods on software engineering data Proceedings of the International Conference On Software Engineering and Knowledge Engineering, Seke. 2015: 385-390. DOI: 10.18293/SEKE2015!-198 |
0.568 |
|
2015 |
Zuech R, Khoshgoftaar TM, Wald R. Intrusion detection and Big Heterogeneous Data: a Survey Journal of Big Data. 2. DOI: 10.1186/S40537-015-0013-4 |
0.795 |
|
2015 |
Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning applications and challenges in big data analytics Journal of Big Data. 2. DOI: 10.1186/S40537-014-0007-7 |
0.804 |
|
2015 |
Gao K, Khoshgoftaar TM, Napolitano A. An Empirical Investigation of Combining Filter-Based Feature Subset Selection and Data Sampling for Software Defect Prediction International Journal of Reliability, Quality and Safety Engineering. 22: 1550027. DOI: 10.1142/S0218539315500278 |
0.75 |
|
2015 |
Khoshgoftaar TM, Gao K, Chen Y, Napolitano A. Comparing Feature Selection Techniques for Software Quality Estimation Using Data-Sampling-Based Boosting Algorithms International Journal of Reliability, Quality and Safety Engineering. 22: 1550013. DOI: 10.1142/S0218539315500138 |
0.752 |
|
2015 |
Gao K, Khoshgoftaar TM. Assessments of feature selection techniques with respect to data sampling for highly imbalanced software measurement data International Journal of Reliability, Quality and Safety Engineering. 22. DOI: 10.1142/S0218539315500102 |
0.663 |
|
2015 |
Gao K, Khoshgoftaar TM, Napolitano A. Aggregating Data Sampling with Feature Subset Selection to Address Skewed Software Defect Data International Journal of Software Engineering and Knowledge Engineering. 25: 1531-1550. DOI: 10.1142/S0218194015400318 |
0.739 |
|
2015 |
Wang H, Khoshgoftaar TM, Seliya N. On the stability of feature selection methods in software quality prediction: An empirical investigation International Journal of Software Engineering and Knowledge Engineering. 25: 1467-1490. DOI: 10.1142/S0218194015400288 |
0.735 |
|
2015 |
Gao K, Khoshgoftaar TM, Napolitano A. Investigating two approaches for adding feature ranking to sampled ensemble learning for software quality estimation International Journal of Software Engineering and Knowledge Engineering. 25: 115-146. DOI: 10.1142/S0218194015400069 |
0.746 |
|
2015 |
Wang H, Khoshgoftaar TM, Napolitano A. An Empirical Investigation on Wrapper-Based Feature Selection for Predicting Software Quality International Journal of Software Engineering and Knowledge Engineering. 25: 93-114. DOI: 10.1142/S0218194015400057 |
0.675 |
|
2015 |
Richter AN, Khoshgoftaar TM, Landset S, Hasanin T. A Multi-dimensional Comparison of Toolkits for Machine Learning with Big Data Proceedings - 2015 Ieee 16th International Conference On Information Reuse and Integration, Iri 2015. 1-8. DOI: 10.1109/IRI.2015.12 |
0.326 |
|
2015 |
Zuech R, Khoshgoftaar TM. A survey on feature selection for intrusion detection Proceedings - 21st Issat International Conference On Reliability and Quality in Design. 150-155. |
0.324 |
|
2015 |
Najafabadi MM, Khoshgoftaar TM, Napolitano A. A comparison of feature selection strategies for identifying malicious network sessions Proceedings - 21st Issat International Conference On Reliability and Quality in Design. 161-167. |
0.305 |
|
2014 |
Herland M, Khoshgoftaar TM, Wald R. A review of data mining using big data in health informatics Journal of Big Data. 1: 2. DOI: 10.1186/2196-1115-1-2 |
0.793 |
|
2014 |
Gao K, Khoshgoftaar TM, Wald R. The use of under- and oversampling within ensemble feature selection and classification for software quality prediction International Journal of Reliability, Quality and Safety Engineering. 21. DOI: 10.1142/S0218539314500041 |
0.851 |
|
2014 |
Gao K, Khoshgoftaar TM, Napolitano A. The Use of Ensemble-Based Data Preprocessing Techniques for Software Defect Prediction International Journal of Software Engineering and Knowledge Engineering. 24: 1229-1253. DOI: 10.1142/S0218194014400105 |
0.751 |
|
2014 |
Najafabadi MM, Khoshgoftaar TM, Kemp C, Seliya N, Zuech R. Machine learning for detecting brute force attacks at the network level Proceedings - Ieee 14th International Conference On Bioinformatics and Bioengineering, Bibe 2014. 379-385. DOI: 10.1109/BIBE.2014.73 |
0.608 |
|
2014 |
Seiffert C, Khoshgoftaar TM, Van Hulse J, Folleco A. An empirical study of the classification performance of learners on imbalanced and noisy software quality data Information Sciences. 259: 571-595. DOI: 10.1016/J.Ins.2010.12.016 |
0.744 |
|
2014 |
Khoshgoftaar TM, Xiao Y, Gao K. Software quality assessment using a multi-strategy classifier Information Sciences. 259: 555-570. DOI: 10.1016/J.Ins.2010.11.028 |
0.721 |
|
2014 |
Xu Z, Gao K, Khoshgoftaar TM, Seliya N. System regression test planning with a fuzzy expert system Information Sciences. 259: 532-543. DOI: 10.1016/J.Ins.2010.09.012 |
0.745 |
|
2014 |
Khoshgoftaar TM, Wang H, Seliya N. Performance of filter-based feature subset selection for software quality data classification Rqd 2014 - Proceedings - 20th Issat International Conference Reliability and Quality in Design. 218-222. |
0.731 |
|
2013 |
WINTER V, CUKIC B, KHOSHGOFTAAR T, MORI K, PAUL R, PÉREZ-LEGUÍZAMO C, SEDIGH SARVESTANI S, SLOAN JC, VOUK M, YEN I. HIGH CONSEQUENCE SYSTEMS AND SEMANTIC COMPUTING International Journal of Semantic Computing. 7: 291-324. DOI: 10.1142/S1793351X13500050 |
0.668 |
|
2013 |
Wald R, Khoshgoftaar TM, Sloan JC. Feature selection for optimization of wavelet packet decomposition in reliability analysis of systems International Journal On Artificial Intelligence Tools. 22. DOI: 10.1142/S0218213013600117 |
0.813 |
|
2013 |
WANG H, KHOSHGOFTAAR TM, LIANG Q(. A STUDY OF SOFTWARE METRIC SELECTION TECHNIQUES: STABILITY ANALYSIS AND DEFECT PREDICTION MODEL PERFORMANCE International Journal On Artificial Intelligence Tools. 22: 1360010. DOI: 10.1142/S0218213013600105 |
0.487 |
|
2013 |
Wang H, Khoshgoftaar TM, Napolitano A. An empirical study on wrapper-based feature selection for software engineering data Proceedings - 2013 12th International Conference On Machine Learning and Applications, Icmla 2013. 2: 84-89. DOI: 10.1109/ICMLA.2013.110 |
0.635 |
|
2013 |
Seliya N, Khoshgoftaar TM. Software quality analysis with distribution bias in defect data Proceedings - 19th Issat International Conference On Reliability and Quality in Design, Rqd 2013. 225-229. |
0.722 |
|
2013 |
Gao K, Khoshgoftaar TM, Napolitano A. Exploring ensemble-based data preprocessing techniques for software quality estimation Proceedings of the International Conference On Software Engineering and Knowledge Engineering, Seke. 2013: 612-617. |
0.447 |
|
2013 |
Gao K, Khoshgoftaar TM, Wald R. A comparative study of iterative feature selection and boosting for software quality estimation Proceedings - 19th Issat International Conference On Reliability and Quality in Design, Rqd 2013. 230-234. |
0.446 |
|
2012 |
Gao K, Khoshgoftaar TM, Wang H. Exploring filter-based feature selection techniques for software quality classification International Journal of Information and Decision Sciences. 4: 217-250. DOI: 10.1504/Ijids.2012.047074 |
0.656 |
|
2012 |
Shanab AA, Khoshgoftaar TM, Wald R, Van Hulse J. Evaluation of the importance of data pre-processing order when combining feature selection and data sampling International Journal of Business Intelligence and Data Mining. 7: 116-134. DOI: 10.1504/Ijbidm.2012.048730 |
0.817 |
|
2012 |
Altidor W, Khoshgoftaar TM, Napolitano A. Measuring stability of feature ranking techniques: A noise-based approach International Journal of Business Intelligence and Data Mining. 7: 80-115. DOI: 10.1504/Ijbidm.2012.048729 |
0.82 |
|
2012 |
Wald R, Khoshgoftaar TM, Alhalabi B. Baseline-differencing: A novel approach for building generalizable ocean turbine reliability models International Journal of Reliability, Quality and Safety Engineering. 19. DOI: 10.1142/S0218539312400050 |
0.805 |
|
2012 |
KHOSHGOFTAAR TM, GAO K, NAPOLITANO A. AN EMPIRICAL STUDY OF FEATURE RANKING TECHNIQUES FOR SOFTWARE QUALITY PREDICTION International Journal of Software Engineering and Knowledge Engineering. 22: 161-183. DOI: 10.1142/S0218194012400013 |
0.744 |
|
2012 |
Duhaney J, Khoshgoftaar TM, Wald R. Applying feature selection to short time wavelet transformed vibration data for reliability analysis of an ocean turbine Proceedings - 2012 11th International Conference On Machine Learning and Applications, Icmla 2012. 1: 330-337. DOI: 10.1109/ICMLA.2012.62 |
0.355 |
|
2012 |
Wang H, Khoshgoftaar TM, Napolitano A. An empirical study on the stability of feature selection for imbalanced software engineering data Proceedings - 2012 11th International Conference On Machine Learning and Applications, Icmla 2012. 1: 317-323. DOI: 10.1109/ICMLA.2012.60 |
0.611 |
|
2012 |
Wang H, Khoshgoftaar TM, Napolitano A. Software measurement data reduction using ensemble techniques Neurocomputing. 92: 124-132. DOI: 10.1016/J.Neucom.2011.08.040 |
0.673 |
|
2012 |
Van Hulse J, Khoshgoftaar TM, Napolitano A, Wald R. Threshold-based feature selection techniques for high-dimensional bioinformatics data Network Modeling Analysis in Health Informatics and Bioinformatics. 1: 47-61. DOI: 10.1007/S13721-012-0006-6 |
0.818 |
|
2012 |
Gao K, Khoshgoftaar TM, Seliya N. Predicting high-risk program modules by selecting the right software measurements Software Quality Journal. 20: 3-42. DOI: 10.1007/S11219-011-9132-0 |
0.781 |
|
2011 |
Van Hulse J, Khoshgoftaar TM, Napolitano A. An exploration of learning when data is noisy and imbalanced Intelligent Data Analysis. 15: 215-236. DOI: 10.3233/IDA-2010-0464 |
0.734 |
|
2011 |
Van Hulse J, Khoshgoftaar TM, Napolitano A. Evaluating the impact of data quality on sampling Journal of Information and Knowledge Management. 10: 225-245. DOI: 10.1142/S021964921100295X |
0.756 |
|
2011 |
Khoshgoftaar TM, Gao K, Bullard LA. A Comparative study of filter-based and wrapper-based feature ranking techniques for software quality modeling International Journal of Reliability, Quality and Safety Engineering. 18: 341-364. DOI: 10.1142/S0218539311004287 |
0.841 |
|
2011 |
Sloan JC, Khoshgoftaar TM, Alhalabi B, Beaujean PP. Strategy and application of data-driven testing of an ocean turbine drivetrain International Journal of Reliability, Quality and Safety Engineering. 18: 555-571. DOI: 10.1142/S021853931100424X |
0.71 |
|
2011 |
Wang H, Khoshgoftaar TM, Van Hulse J, Gao K. Metric selection for software defect prediction International Journal of Software Engineering and Knowledge Engineering. 21: 237-257. DOI: 10.1142/S0218194011005256 |
0.785 |
|
2011 |
Khoshgoftaar TM, Van Hulse J, Napolitano A. Comparing boosting and bagging techniques with noisy and imbalanced data Ieee Transactions On Systems, Man, and Cybernetics Part a:Systems and Humans. 41: 552-568. DOI: 10.1109/TSMCA.2010.2084081 |
0.772 |
|
2011 |
Wald R, Khoshgoftaar T, Sloan JC. Fourier transforms for vibration analysis: A review and case study Proceedings of the 2011 Ieee International Conference On Information Reuse and Integration, Iri 2011. 366-371. DOI: 10.1109/IRI.2011.6009575 |
0.641 |
|
2011 |
Van Hulse J, Khoshgoftaar TM, Napolitano A. A comparative evaluation of feature ranking methods for high dimensional bioinformatics data Proceedings of the 2011 Ieee International Conference On Information Reuse and Integration, Iri 2011. 315-320. DOI: 10.1109/IRI.2011.6009566 |
0.763 |
|
2011 |
Wang H, Khoshgoftaar TM, Wald R. Measuring robustness of Feature Selection techniques on software engineering datasets Proceedings of the 2011 Ieee International Conference On Information Reuse and Integration, Iri 2011. 309-314. DOI: 10.1109/IRI.2011.6009565 |
0.33 |
|
2011 |
Altidor W, Khoshgoftaar TM, Napolitano A. A noise-based stability evaluation of threshold-based feature selection techniques Proceedings of the 2011 Ieee International Conference On Information Reuse and Integration, Iri 2011. 240-245. DOI: 10.1109/IRI.2011.6009553 |
0.808 |
|
2011 |
Shanab AA, Khoshgoftaar TM, Wald R, Van Hulse J. Comparison of approaches to alleviate problems with high-dimensional and class-imbalanced data Proceedings of the 2011 Ieee International Conference On Information Reuse and Integration, Iri 2011. 234-239. DOI: 10.1109/IRI.2011.6009552 |
0.702 |
|
2011 |
Duhaney J, Khoshgoftaar TM, Sloan JC. Feature selection on dynamometer data for reliability analysis Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 1012-1019. DOI: 10.1109/ICTAI.2011.173 |
0.728 |
|
2011 |
Wang H, Khoshgoftaar TM. Measuring stability of threshold-based feature selection techniques Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 986-993. DOI: 10.1109/ICTAI.2011.169 |
0.332 |
|
2011 |
Wald R, Khoshgoftaar TM, Sloan JC. Feature selection for vibration sensor data transformed by a streaming wavelet packet decomposition Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 978-985. DOI: 10.1109/ICTAI.2011.168 |
0.702 |
|
2011 |
Duhaney J, Khoshgoftaar TM, Sloan JC, Alhalabi B, Beaujean PP. A dynamometer for an ocean turbine prototype - Reliability through automated monitoring Proceedings of Ieee International Symposium On High Assurance Systems Engineering. 244-251. DOI: 10.1109/HASE.2011.61 |
0.702 |
|
2011 |
Wald R, Khoshgoftaar TM, Sloan JC. Using feature selection to determine optimal depth forwavelet packet decomposition of vibration signals for ocean system reliability Proceedings of Ieee International Symposium On High Assurance Systems Engineering. 236-243. DOI: 10.1109/HASE.2011.60 |
0.705 |
|
2011 |
Sloan JC, Khoshgoftaar TM. Ensemble coordination for discrete event control Proceedings of Ieee International Symposium On High Assurance Systems Engineering. 227-235. DOI: 10.1109/HASE.2011.26 |
0.682 |
|
2011 |
Seliya N, Khoshgoftaar TM. The use of decision trees for cost-sensitive classification: An empirical study in software quality prediction Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 1: 448-459. DOI: 10.1002/Widm.38 |
0.703 |
|
2011 |
Gao K, Khoshgoftaar TM, Wang H, Seliya N. Choosing software metrics for defect prediction: An investigation on feature selection techniques Software - Practice and Experience. 41: 579-606. DOI: 10.1002/Spe.1043 |
0.785 |
|
2011 |
Gao K, Khoshgoftaar TM. Exploring several strategies to improve software quality prediction Proceedings - 17th Issat International Conference On Reliability and Quality in Design. 325-329. |
0.444 |
|
2011 |
Gao K, Khoshgoftaar TM. Software defect prediction for high-dimensional and class-imbalanced data Seke 2011 - Proceedings of the 23rd International Conference On Software Engineering and Knowledge Engineering. 89-94. |
0.428 |
|
2011 |
Sloan JC, Khoshgoftaar TM, Alhalabi B. A strategy for data-driven testing of an ocean turbine drivetrain Proceedings - 17th Issat International Conference On Reliability and Quality in Design. 364-368. |
0.668 |
|
2011 |
Altidor W, Khoshgoftaar TM, Van Hulse J. Robustness of filter-based feature ranking: A case study Proceedings of the 24th International Florida Artificial Intelligence Research Society, Flairs - 24. 453-458. |
0.797 |
|
2010 |
Khoshgoftaar TM, Van Hulse J, Napolitano A. Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors. Ieee Transactions On Neural Networks / a Publication of the Ieee Neural Networks Council. 21: 813-30. PMID 20236881 DOI: 10.1109/Tnn.2010.2042730 |
0.745 |
|
2010 |
Qian L, Yao Q, Khoshgoftaar TM. Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software Journal of Software Engineering and Applications. 3: 603-609. DOI: 10.4236/Jsea.2010.36070 |
0.367 |
|
2010 |
Khoshgoftaar TM, Seliya N, Drown DJ. Evolutionary data analysis for the class imbalance problem Intelligent Data Analysis. 14: 69-88. DOI: 10.3233/IDA-2010-0409 |
0.696 |
|
2010 |
Altidor W, Khoshgoftaar TM, Gao K. Wrapper-based feature ranking techniques for determining relevance of software engineering metrics International Journal of Reliability, Quality and Safety Engineering. 17: 425-464. DOI: 10.1142/S0218539310003883 |
0.837 |
|
2010 |
Van Hulse J, Khoshgoftaar TM, Napolitano A. An empirical evaluation of repetitive undersampling techniques International Journal of Software Engineering and Knowledge Engineering. 20: 173-195. DOI: 10.1142/S0218194010004682 |
0.753 |
|
2010 |
Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. RUSBoost: A hybrid approach to alleviating class imbalance Ieee Transactions On Systems, Man, and Cybernetics Part a:Systems and Humans. 40: 185-197. DOI: 10.1109/TSMCA.2009.2029559 |
0.759 |
|
2010 |
Liu Y, Khoshgoftaar TM, Seliya N. Evolutionary optimization of software quality modeling with multiple repositories Ieee Transactions On Software Engineering. 36: 852-864. DOI: 10.1109/Tse.2010.51 |
0.736 |
|
2010 |
Seliya N, Khoshgoftaar TM. Active learning with neural networks for intrusion detection 2010 Ieee International Conference On Information Reuse and Integration, Iri 2010. 49-54. DOI: 10.1109/IRI.2010.5558967 |
0.669 |
|
2010 |
Khoshgoftaar TM, Gao K, Van Hulse J. A novel feature selection technique for highly imbalanced data 2010 Ieee International Conference On Information Reuse and Integration, Iri 2010. 80-85. DOI: 10.1109/IRI.2010.5558961 |
0.727 |
|
2010 |
Khoshgoftaar TM, Gao K, Seliya N. Attribute selection and imbalanced data: Problems in software defect prediction Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 1: 137-144. DOI: 10.1109/ICTAI.2010.27 |
0.736 |
|
2010 |
Van Hulse J, Khoshgoftaar TM, Napolitano A. A novel noise filtering algorithm for imbalanced data Proceedings - 9th International Conference On Machine Learning and Applications, Icmla 2010. 9-14. DOI: 10.1109/ICMLA.2010.9 |
0.726 |
|
2010 |
Dittman DJ, Khoshgoftaar TM, Wald R, Van Hulse J. Comparative analysis of DNA microarray data through the use of feature selection techniques Proceedings - 9th International Conference On Machine Learning and Applications, Icmla 2010. 147-152. DOI: 10.1109/ICMLA.2010.29 |
0.623 |
|
2010 |
Seliya N, Khoshgoftaar TM, Van Hulse J. Predicting faults in high assurance software Proceedings of Ieee International Symposium On High Assurance Systems Engineering. 26-34. DOI: 10.1109/HASE.2010.29 |
0.81 |
|
2010 |
Wang H, Khoshgoftaar TM, Van Hulse J. A comparative study of threshold-based feature selection techniques Proceedings - 2010 Ieee International Conference On Granular Computing, Grc 2010. 499-504. DOI: 10.1109/GrC.2010.104 |
0.735 |
|
2010 |
Khoshgoftaar TM, Gao K. A novel software metric selection technique using the area under ROC curves Seke 2010 - Proceedings of the 22nd International Conference On Software Engineering and Knowledge Engineering. 203-208. |
0.438 |
|
2010 |
Seliya N, Khoshgoftaar TM. SOftware defect prediction with skewed data Proceedings - 16th Issat International Conference On Reliability and Quality in Design. 403-407. |
0.711 |
|
2010 |
Wang H, Khoshgoftaar TM, Gao K. Ensemble feature selection technique for software quality classification Seke 2010 - Proceedings of the 22nd International Conference On Software Engineering and Knowledge Engineering. 215-220. |
0.429 |
|
2009 |
Seiffert C, Khoshgoftaar TM, Van Hulse J. Hybrid sampling for imbalanced data Integrated Computer-Aided Engineering. 16: 193-210. DOI: 10.3233/ICA-2009-0314 |
0.676 |
|
2009 |
Su X, Khoshgoftaar TM, Greiner R. Making an accurate classifier ensemble by voting on classifications from imputed learning sets International Journal of Information and Decision Sciences. 1: 301-322. DOI: 10.1504/Ijids.2009.027657 |
0.631 |
|
2009 |
Su X, Khoshgoftaar TM. A Survey of Collaborative Filtering Techniques Advances in Artificial Intelligence. 2009: 1-19. DOI: 10.1155/2009/421425 |
0.556 |
|
2009 |
Sloan JC, Khoshgoftaar TM, Beaujean PP, Driscoll F. Ocean turbines - A reliability assessment International Journal of Reliability, Quality and Safety Engineering. 16: 413-433. DOI: 10.1142/S0218539309003472 |
0.693 |
|
2009 |
Sloan JC, Khoshgoftaar TM. Testing and Formal Verification of Service Oriented Architectures International Journal of Reliability, Quality and Safety Engineering. 16: 137-162. DOI: 10.1142/S0218539309003332 |
0.703 |
|
2009 |
Khoshgoftaar TM, Bullard LA, Gao K. Attribute selection using rough sets in software quality classification International Journal of Reliability, Quality and Safety Engineering. 16: 73-89. DOI: 10.1142/S0218539309003307 |
0.834 |
|
2009 |
Seiffert C, Khoshgoftaar TM, Van Hulse J. Improving software-quality predictions with data sampling and boosting Ieee Transactions On Systems, Man, and Cybernetics Part a:Systems and Humans. 39: 1283-1294. DOI: 10.1109/TSMCA.2009.2027131 |
0.732 |
|
2009 |
Drown DJ, Khoshgoftaar TM, Seliya N. Evolutionary sampling and software quality modeling of high-assurance systems Ieee Transactions On Systems, Man, and Cybernetics Part a:Systems and Humans. 39: 1097-1107. DOI: 10.1109/TSMCA.2009.2020804 |
0.714 |
|
2009 |
Sloan JC, Khoshgoftaar TM. From Web service artifact to a readable and verifiable model Ieee Transactions On Services Computing. 2: 277-288. DOI: 10.1109/Tsc.2009.23 |
0.692 |
|
2009 |
Van Hulse J, Khoshgoftaar TM, Napolitano A. An empirical comparison of repetitive undersampling techniques 2009 Ieee International Conference On Information Reuse and Integration, Iri 2009. 29-34. DOI: 10.1109/IRI.2009.5211614 |
0.754 |
|
2009 |
Seliya N, Khoshgoftaar TM, Van Hulse J. Aggregating performance metrics for classifier evaluation 2009 Ieee International Conference On Information Reuse and Integration, Iri 2009. 35-40. DOI: 10.1109/IRI.2009.5211611 |
0.779 |
|
2009 |
Altidor W, Khoshgoftaar TM, Van Hulse J. An empirical study on wrapper-based feature ranking Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 75-82. DOI: 10.1109/ICTAI.2009.29 |
0.819 |
|
2009 |
Seliya N, Khoshgoftaar TM, Van Hulse J. A study on the relationships of classifier performance metrics Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 59-66. DOI: 10.1109/ICTAI.2009.25 |
0.791 |
|
2009 |
Wang H, Khoshgoftaar TM, Gao K, Seliya N. High-dimensional software engineering data and feature selection Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 83-90. DOI: 10.1109/ICTAI.2009.20 |
0.724 |
|
2009 |
Khoshgoftaar TM, Gao K. Feature selection with imbalanced data for software defect prediction 8th International Conference On Machine Learning and Applications, Icmla 2009. 235-240. DOI: 10.1109/ICMLA.2009.18 |
0.392 |
|
2009 |
Altidor W, Khoshgoftaar TM, Napolitano A. Wrapper-based feature ranking for software engineering metrics 8th International Conference On Machine Learning and Applications, Icmla 2009. 241-246. DOI: 10.1109/ICMLA.2009.17 |
0.824 |
|
2009 |
Wang H, Khoshgoftaar TM, Gao K, Seliya N. Mining data from multiple software development projects Icdm Workshops 2009 - Ieee International Conference On Data Mining. 551-557. DOI: 10.1109/ICDMW.2009.78 |
0.713 |
|
2009 |
Van Hulse J, Khoshgoftaar TM, Napolitano A, Wald R. Feature selection with high-dimensional imbalanced data Icdm Workshops 2009 - Ieee International Conference On Data Mining. 507-514. DOI: 10.1109/ICDMW.2009.35 |
0.735 |
|
2009 |
Van Hulse J, Khoshgoftaar T. Knowledge discovery from imbalanced and noisy data Data and Knowledge Engineering. 68: 1513-1542. DOI: 10.1016/j.datak.2009.08.005 |
0.683 |
|
2009 |
Khoshgoftaar TM, Rebours P, Seliya N. Software quality analysis by combining multiple projects and learners Software Quality Journal. 17: 25-49. DOI: 10.1007/S11219-008-9058-3 |
0.723 |
|
2009 |
Seliya N, Khoshgoftaar TM. Cost-based fault prediction models Proceedings - 15th Issat International Conference On Reliability and Quality in Design. 352-356. |
0.675 |
|
2009 |
Seliya N, Khoshgoftaar TM. Value-based software quality modeling Proceedings of the 21st International Conference On Software Engineering and Knowledge Engineering, Seke 2009. 116-121. |
0.692 |
|
2009 |
Lin P, Wang H, Khoshgoftaar TM. A novel hybrid search algorithm for feature selection Proceedings of the 21st International Conference On Software Engineering and Knowledge Engineering, Seke 2009. 81-86. |
0.339 |
|
2009 |
Sloan JC, Khoshgoftaar TM, Varas A. An extendible translation of BPEL to a machine-verifiable model Proceedings of the 21st International Conference On Software Engineering and Knowledge Engineering, Seke 2009. 344-349. |
0.673 |
|
2008 |
Khoshgoftaar TM, Bullard LA, Gao K. A rule-based software quality classification model International Journal of Reliability, Quality and Safety Engineering. 15: 247-259. DOI: 10.1142/S0218539308003064 |
0.826 |
|
2008 |
Su X, Khoshgoftaar TM. Collaborative filtering for multi-class data using bayesian networks International Journal On Artificial Intelligence Tools. 17: 71-85. DOI: 10.1142/S0218213008003789 |
0.616 |
|
2008 |
Sloan JC, Khoshgoftaar TM, Raghav V. Assuring timeliness in an e-Science service-oriented architecture Computer. 41: 56-62. DOI: 10.1109/Mc.2008.313 |
0.663 |
|
2008 |
Folleco A, Khoshgoftaar TM, Van Hulse J, Bullard L. Identifying learners robust to low quality data 2008 Ieee International Conference On Information Reuse and Integration, Ieee Iri-2008. 190-195. DOI: 10.1109/IRI.2008.4583028 |
0.676 |
|
2008 |
Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. Resampling or reweighting: A comparison of boosting implementations Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 1: 445-451. DOI: 10.1109/ICTAI.2008.59 |
0.733 |
|
2008 |
Seliya N, Xu Z, Khoshgoftaar TM. Addressing class imbalance in non-binary classification problems Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 1: 460-466. DOI: 10.1109/ICTAI.2008.120 |
0.688 |
|
2008 |
Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. A comparative study of data sampling and cost sensitive learning Proceedings - Ieee International Conference On Data Mining Workshops, Icdm Workshops 2008. 46-52. DOI: 10.1109/ICDMW.2008.119 |
0.732 |
|
2008 |
Folleco A, Khoshgoftaar TM, Van Hulse J, Bullard L. Software quality modeling: The impact of class noise on the random forest classifier 2008 Ieee Congress On Evolutionary Computation, Cec 2008. 3853-3859. DOI: 10.1109/CEC.2008.4631321 |
0.678 |
|
2008 |
Van Hulse J, Khoshgoftaar TM. A comprehensive empirical evaluation of missing value imputation in noisy software measurement data Journal of Systems and Software. 81: 691-708. DOI: 10.1016/J.Jss.2007.07.043 |
0.735 |
|
2008 |
Khoshgoftaar TM, Van Hulse J. Imputation techniques for multivariate missingness in software measurement data Software Quality Journal. 16: 563-600. DOI: 10.1007/s11219-008-9054-7 |
0.68 |
|
2008 |
Folleco A, Khoshgoftaar TM, Van Hulse J. Software fault imputation in noisy and incomplete measurement data Springer Series in Reliability Engineering. 18: 255-274. DOI: 10.1007/978-1-84800-113-8_12 |
0.648 |
|
2008 |
Sloan JC, Khoshgoftaar TM. Toward model checking web services over the web 20th International Conference On Software Engineering and Knowledge Engineering, Seke 2008. 519-524. |
0.648 |
|
2008 |
Sloan JC, Khoshgoftaar TM. Tradeoffs in testing service oriented architectures Proceedings - 14th Issat International Conference On Reliability and Quality in Design. 141-145. |
0.656 |
|
2008 |
Seliya N, Khoshgoftaar TM. Software quality modeling and estimation with missing data International Journal of Performability Engineering. 4: 5-18. |
0.707 |
|
2008 |
Seliya N, Khoshgoftaar TM. Addressing class imbalance in software quality modeling Proceedings - 14th Issat International Conference On Reliability and Quality in Design. 137-140. |
0.73 |
|
2008 |
Sloan JC, Khoshgoftaar TM, Folleco A. Testingweb services as agents Proceedings - 14th Issat International Conference On Reliability and Quality in Design. 151-155. |
0.633 |
|
2008 |
Folleco AA, Khoshgoftaar TM, Bullard LA. Analyzing the impact of attribute noise on software quality classification 20th International Conference On Software Engineering and Knowledge Engineering, Seke 2008. 73-78. |
0.796 |
|
2007 |
Seliya N, Khoshgoftaar TM. Software quality modeling with limited apriori defect data Knowledge Discovery and Data Mining: Challenges and Realities. 1-15. DOI: 10.4018/978-1-59904-252-7.ch001 |
0.714 |
|
2007 |
Khoshgoftaar TM, Van Hulse J, Seiffert C, Zhao L. The multiple imputation quantitative noise corrector Intelligent Data Analysis. 11: 245-263. DOI: 10.3233/ida-2007-11303 |
0.595 |
|
2007 |
Van Hulse J, Khoshgoftaar TM, Napolitano A. Experimental perspectives on learning from imbalanced data Acm International Conference Proceeding Series. 227: 935-942. DOI: 10.1145/1273496.1273614 |
0.731 |
|
2007 |
Zhong S, Khoshgoftaar TM, Seliya N. Clustering-based network intrusion detection International Journal of Reliability, Quality and Safety Engineering. 14: 169-187. DOI: 10.1142/S0218539307002568 |
0.637 |
|
2007 |
Khoshgoftaar TM, Seiffert C, Seliya N. Low-effort labeling of network events for intrusion detection in WLANs Proceedings of the Twentieth International Florida Artificial Intelligence Research Society Conference, Flairs 2007. 490-495. DOI: 10.1142/S0218213008004035 |
0.679 |
|
2007 |
Seliya N, Khoshgoftaar TM. Software quality analysis of unlabeled program modules with semisupervised clustering Ieee Transactions On Systems, Man, and Cybernetics Part a:Systems and Humans. 37: 201-211. DOI: 10.1109/TSMCA.2006.889473 |
0.702 |
|
2007 |
Khoshgoftaar TM, Liu Y. A multi-objective software quality classification model using genetic programming Ieee Transactions On Reliability. 56: 237-245. DOI: 10.1109/Tr.2007.896763 |
0.458 |
|
2007 |
Gao K, Khoshgoftaar TM. A comprehensive empirical study of count models for software fault prediction Ieee Transactions On Reliability. 56: 223-236. DOI: 10.1109/Tr.2007.896761 |
0.447 |
|
2007 |
Khoshgoftaar TM, Gao K. Count models for software quality estimation Ieee Transactions On Reliability. 56: 212-222. DOI: 10.1109/Tr.2007.896757 |
0.464 |
|
2007 |
Luo Q, Khoshgoftaar TM. An empirical study on estimating motions in video stabilization 2007 Ieee International Conference On Information Reuse and Integration, Ieee Iri-2007. 360-366. DOI: 10.1109/IRI.2007.4296647 |
0.351 |
|
2007 |
Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. Mining data with rare events: A case study Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 2: 132-139. DOI: 10.1109/ICTAI.2007.71 |
0.742 |
|
2007 |
Khoshgoftaar TM, Golawala M, Van Hulse J. An empirical study of learning from imbalanced data using random forest Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 2: 310-317. DOI: 10.1109/ICTAI.2007.46 |
0.657 |
|
2007 |
Khoshgoftaar TM, Seiffert C, Van Hulse J, Napolitano A, Folleco A. Learning with limited minority class data Proceedings - 6th International Conference On Machine Learning and Applications, Icmla 2007. 348-353. DOI: 10.1109/ICMLA.2007.64 |
0.736 |
|
2007 |
Bullard LA, Khoshgoftaar TM, Kehan G. An Application of a rule-based model in software quality classification Proceedings - 6th International Conference On Machine Learning and Applications, Icmla 2007. 204-210. DOI: 10.1109/ICMLA.2007.14 |
0.794 |
|
2007 |
Van Hulse J, Khoshgoftaar TM, Napolitano A. Skewed class distributions and mislabeled examples Proceedings - Ieee International Conference On Data Mining, Icdm. 477-482. DOI: 10.1109/ICDMW.2007.34 |
0.723 |
|
2007 |
Van Hulse J, Khoshgoftaar TM. Incomplete-case nearest neighbor imputation in software measurement data 2007 Ieee International Conference On Information Reuse and Integration, Ieee Iri-2007. 630-637. DOI: 10.1016/J.Ins.2010.12.017 |
0.692 |
|
2007 |
Khoshgoftaar TM, Rebours P. Improving software quality prediction by noise filtering techniques Journal of Computer Science and Technology. 22: 387-396. DOI: 10.1007/S11390-007-9054-2 |
0.371 |
|
2007 |
Seliya N, Khoshgoftaar TM. Software quality estimation with limited fault data: a semi-supervised learning perspective Software Quality Journal. 15: 327-344. DOI: 10.1007/S11219-007-9013-8 |
0.725 |
|
2007 |
Zhu X, Khoshgoftaar TM, Davidson I, Zhang S. Editorial: Special issue on mining low-quality data Knowledge and Information Systems. 11: 131-136. DOI: 10.1007/S10115-006-0058-Y |
0.387 |
|
2007 |
Khoshgoftaar TM, Seliya N. Ordinal classification for intrusion detection in wireless networks: An empirical evaluation Proceedings - 13th Issat International Conference On Reliability and Quality in Design. 175-180. |
0.672 |
|
2007 |
Van Hulse J, Khoshgoftaar TM, Napolitano A. Software reliability modeling using skewed measurement data Proceedings - 13th Issat International Conference On Reliability and Quality in Design. 181-185. |
0.763 |
|
2007 |
Folleco A, Khoshgoftaar TM, Van Hulse J. Software quality classification with imbalanced and noisy data Proceedings - 13th Issat International Conference On Reliability and Quality in Design. 191-195. |
0.702 |
|
2006 |
Luo Q, Khoshgoftaar TM. Unsupervised multiscale color image segmentation based on MDL principle. Ieee Transactions On Image Processing : a Publication of the Ieee Signal Processing Society. 15: 2755-61. PMID 16948319 DOI: 10.1109/TIP.2006.877342 |
0.401 |
|
2006 |
Liu Y, Khoshgoftaar TM. A practical software quality classification model using genetic programming Advances in Machine Learning Applications in Software Engineering. 208-236. DOI: 10.4018/978-1-59140-941-1.ch009 |
0.336 |
|
2006 |
Khoshgoftaar TM, Rebours P. Noise elimination with partitioning filter for software quality estimation International Journal of Computer Applications in Technology. 27: 246-258. DOI: 10.1504/Ijcat.2006.011996 |
0.377 |
|
2006 |
Khoshgoftaar TM, Gao K, Lin H. Indirect classification approaches: A comparative study in network intrusion detection International Journal of Computer Applications in Technology. 27: 232-245. DOI: 10.1504/Ijcat.2006.011995 |
0.607 |
|
2006 |
Khoshgoftaar TM, Szabo RM. Dynamic models for testing based on time series analysis International Journal of Reliability, Quality and Safety Engineering. 13: 581-597. DOI: 10.1142/S0218539306002434 |
0.433 |
|
2006 |
FOLLECO A, KHOSHGOFTAAR T. ATTRIBUTE NOISE DETECTION USING MULTI-RESOLUTION ANALYSIS International Journal of Reliability, Quality and Safety Engineering. 13: 267-288. DOI: 10.1142/S0218539306002252 |
0.421 |
|
2006 |
Khoshgoftaar TM, Folleco A, Van Hulse J, Bullard L. Software quality imputation in the presence of noisy data Proceedings of the 2006 Ieee International Conference On Information Reuse and Integration, Iri-2006. 484-489. DOI: 10.1109/IRI.2006.252462 |
0.704 |
|
2006 |
Van Hulse J, Khoshgoftaar TM, Seiffert C, Zhao L. Noise correction using Bayesian multiple imputation Proceedings of the 2006 Ieee International Conference On Information Reuse and Integration, Iri-2006. 478-483. DOI: 10.1109/IRI.2006.252461 |
0.634 |
|
2006 |
Khoshgoftaar TM, Seiffert C, Seliya N. Labeling network event records for intrusion detection in a wireless LAN Proceedings of the 2006 Ieee International Conference On Information Reuse and Integration, Iri-2006. 200-206. DOI: 10.1109/IRI.2006.252413 |
0.659 |
|
2006 |
Khoshgoftaar TM, Van Hulse J, Seiffert C. A hybrid approach to cleansing software measurement data Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 713-722. DOI: 10.1109/ICTAI.2006.11 |
0.695 |
|
2006 |
Van Hulse J, Khoshgoftaar TM, Seiffert C. A comparison of software fault imputation procedures Proceedings - 5th International Conference On Machine Learning and Applications, Icmla 2006. 135-142. DOI: 10.1109/ICMLA.2006.5 |
0.685 |
|
2006 |
Rebours P, Khoshgoftaar TM. Quality Problem in Software Measurement Data Advances in Computers. 66: 43-77. DOI: 10.1016/S0065-2458(05)66002-0 |
0.395 |
|
2006 |
Khoshgoftaar TM, Seliya N, Sundaresh N. An empirical study of predicting software faults with case-based reasoning Software Quality Journal. 14: 85-111. DOI: 10.1007/S11219-006-7597-Z |
0.702 |
|
2006 |
Khoshgoftaar TM, Herzberg A, Seliya N. Resource oriented selection of rule-based classification models: An empirical case study Software Quality Journal. 14: 309-338. DOI: 10.1007/S11219-006-0038-1 |
0.735 |
|
2006 |
Khoshgoftaar TM, Van Hulse J. Multiple imputation of software measurement data: A case study 18th International Conference On Software Engineering and Knowledge Engineering, Seke 2006. 220-226. |
0.689 |
|
2006 |
Seliya N, Khoshgoftaar TM. Software faults modeling with limited defect occurrence knowledge 2006 Proceedings - 12th Issat International Conference On Reliability and Quality in Design. 134-138. |
0.7 |
|
2006 |
Khoshgoftaar TM, Seiffert C, Van Hulse J. Polishing noise in continuous software measurement data 18th International Conference On Software Engineering and Knowledge Engineering, Seke 2006. 227-231. |
0.683 |
|
2006 |
Khoshgoftaar TM, Van Hulse J. Determining noisy instances relative to attributes of interest Intelligent Data Analysis. 10: 251-268. |
0.687 |
|
2006 |
Van Hulse J, Khoshgoftaar TM. Class noise detection using frequent itemsets Intelligent Data Analysis. 10: 487-507. |
0.689 |
|
2005 |
Luo Q, Khoshgoftaar TM, An E. Hierarchical indexing of ocean survey video by mean shift clustering and MDL principle Proceedings of the 2005 Ieee International Conference On Information Reuse and Integration, Iri - 2005. 2005: 404-409. DOI: 10.1109/IRI-05.2005.1506507 |
0.433 |
|
2005 |
Khoshgoftaar TM, Van Hulse J. Empirical case studies in attribute noise detection Proceedings of the 2005 Ieee International Conference On Information Reuse and Integration, Iri - 2005. 2005: 211-216. DOI: 10.1109/IRI-05.2005.1506475 |
0.678 |
|
2005 |
Xiao Y, Khoshgoftaar TM, Seliya N. The partitioning- And rule-based filter for noise detection Proceedings of the 2005 Ieee International Conference On Information Reuse and Integration, Iri - 2005. 2005: 205-210. DOI: 10.1109/IRI-05.2005.1506474 |
0.656 |
|
2005 |
Khoshgoftaar TM, Nath SV, Zhong S, Seliya N. Intrusion detection in wireless networks using clustering techniques with expert analysis Proceedings - Icmla 2005: Fourth International Conference On Machine Learning and Applications. 2005: 120-125. DOI: 10.1109/ICMLA.2005.43 |
0.613 |
|
2005 |
Khoshgoftaar TM, Van Hulse J. Identifying noise in an attribute of interest Proceedings - Icmla 2005: Fourth International Conference On Machine Learning and Applications. 2005: 55-60. DOI: 10.1109/ICMLA.2005.39 |
0.706 |
|
2005 |
Khoshgoftaar TM, Gao K, Szabo RM. Comparing software fault predictions of pure and zero-inflated Poisson regression models International Journal of Systems Science. 36: 705-715. DOI: 10.1080/00207720500159995 |
0.596 |
|
2005 |
Khoshgoftaar TM, Seliya N, Herzberg A. Resource-oriented software quality classification models Journal of Systems and Software. 76: 111-126. DOI: 10.1016/J.Jss.2004.04.027 |
0.711 |
|
2005 |
Khoshgoftaar TM, Seliya N, Gao K. Assessment of a new three-group software quality classification technique: An empirical case study Empirical Software Engineering. 10: 183-218. DOI: 10.1007/S10664-004-6191-X |
0.702 |
|
2005 |
Seliya N, Khoshgoftaar TM. Software quality analysis in the absence of fault-proneness data 2005 Proceedings - 11th Issat International Conference On Reliability and Quality in Design. 101-105. |
0.702 |
|
2005 |
Khoshgoftaar TM, Van Hulse J. Identifying noisy features with the Pairwise Attribute Noise Detection Algorithm Intelligent Data Analysis. 9: 589-602. |
0.629 |
|
2005 |
Khoshgoftaar TM, Seliya N, Gao K. Detecting noisy instances with the rule-based classification model Intelligent Data Analysis. 9: 347-364. |
0.724 |
|
2005 |
Khoshgoftaar TM, Dong Y, Szabo RM. Software quality classification using Bayesian belief networks 2005 Proceedings - 11th Issat International Conference On Reliability and Quality in Design. 106-110. |
0.362 |
|
2004 |
Szabo RM, Khoshgoftaar TM. Classifying software modules into three risk groups International Journal of Reliability, Quality and Safety Engineering. 11: 59-80. DOI: 10.1142/S0218539304001348 |
0.39 |
|
2004 |
Khoshgoftaar TM, Liu Y, Seliya N. A multiobjective module-order model for software quality enhancement Ieee Transactions On Evolutionary Computation. 8: 593-608. DOI: 10.1109/Tevc.2004.837108 |
0.717 |
|
2004 |
Zhong S, Khoshgoftaar TM, Seliya N. Analyzing Software Measurement Data with Clustering Techniques Ieee Intelligent Systems. 19: 20-27. DOI: 10.1109/Mis.2004.1274907 |
0.664 |
|
2004 |
Khoshgoftaar TM, Liu Y, Seliya N. Module-order modeling using an evolutionary multi-objective optimization approach Proceedings - International Software Metrics Symposium. 159-169. DOI: 10.1109/METRIC.2004.1357900 |
0.693 |
|
2004 |
Khoshgoftaar TM, Seliya N. The necessity of assuring quality in software measurement data Proceedings - International Software Metrics Symposium. 119-130. DOI: 10.1109/METRIC.2004.1357896 |
0.734 |
|
2004 |
Khoshgoftaar TM, Seliya N. Comparative assessment of software quality classification techniques: An empirical case study Empirical Software Engineering. 9: 229-257. DOI: 10.1023/B:Emse.0000027781.18360.9B |
0.726 |
|
2004 |
Khoshgoftaar TM, Abushadi ME. Resource-sensitive intrusion detection models for network traffic Proceedings of Ieee International Symposium On High Assurance Systems Engineering. 8: 249-258. DOI: 10.1016/S0065-2458(03)62006-1 |
0.361 |
|
2004 |
Xu Z, Khoshgoftaar TM. Identification of fuzzy models of software cost estimation Fuzzy Sets and Systems. 145: 141-163. DOI: 10.1016/J.Fss.2003.10.008 |
0.499 |
|
2004 |
Tang W, Khoshgoftaar TM. Noise identification with the k-means algorithm Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 373-378. |
0.328 |
|
2004 |
Luo Q, Khoshgoftaar TM. Efficient image segmentation by mean shift clustering and MDL-guided region merging Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 337-343. |
0.428 |
|
2004 |
Khoshgoftaar TM, Seliya N, Gao K. Rule-based noise detection for software measurement data Proceedings of the 2004 Ieee International Conference On Information Reuse and Integration, Iri-2004. 302-307. |
0.703 |
|
2003 |
Khoshgoftaar TM, Geleyn E, Nguyen L. Empirical case studies of combining software quality classification models Proceedings - International Conference On Quality Software. 2003: 40-49. DOI: 10.1109/QSIC.2003.1319084 |
0.352 |
|
2003 |
Khoshgoftaar TM, Seliya N. Analogy-Based Practical Classification Rules for Software Quality Estimation Empirical Software Engineering. 8: 325-350. DOI: 10.1023/A:1025316301168 |
0.718 |
|
2003 |
Khoshgoftaar TM, Seliya N. Fault prediction modeling for software quality estimation: Comparing commonly used techniques Empirical Software Engineering. 8: 255-283. DOI: 10.1023/A:1024424811345 |
0.69 |
|
2003 |
Xu Z, Khoshgoftaar TM, Allen EB. Application of fuzzy expert systems in assessing operational risk of software Information and Software Technology. 45: 373-388. DOI: 10.1016/S0950-5849(03)00010-7 |
0.462 |
|
2003 |
Khoshgoftaar TM, Bullard LA, Gao K. Detecting outliers using rule-based modeling for improving cbr-based software quality classification models Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2689: 216-230. DOI: 10.1007/3-540-45006-8_19 |
0.824 |
|
2003 |
Liu Y, Khoshgoftaar TM. Building decision tree software quality classification models using genetic programming Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2724: 1808-1809. |
0.342 |
|
2003 |
Khoshgoftaar TM, Liu Y, Seliya N. Genetic Programming-Based Decision Trees for Software Quality Classification Proceedings of the International Conference On Tools With Artificial Intelligence. 374-383. |
0.668 |
|
2002 |
Khoshgoftaar TM, Allen EB. Predicting fault-prone software modules in embedded systems with classification trees International Journal of Reliability, Quality and Safety Engineering. 9: 1-16. DOI: 10.1142/S0218539302000639 |
0.373 |
|
2002 |
Khoshgoftaar TM, Seliya N. Software quality classification modeling using the SPRINT decision tree algorithm Proceedings of the International Conference On Tools With Artificial Intelligence. 365-374. DOI: 10.1142/S0218213003001204 |
0.709 |
|
2002 |
Khoshgoftaar TM, Cukic B, Seliya N. Predicting fault-prone modules in embedded systems using analogy-based classification models International Journal of Software Engineering and Knowledge Engineering. 12: 201-221. DOI: 10.1142/S0218194002000883 |
0.683 |
|
2002 |
Khoshgoftaar TM, Allen EB, Deng J. Using regression trees to classify fault-prone software modules Ieee Transactions On Reliability. 51: 455-462. DOI: 10.1109/Tr.2002.804488 |
0.385 |
|
2002 |
Khoshgoftaar TM, Seliya N. Tree-based software quality estimation models for fault prediction Proceedings - International Software Metrics Symposium. 2002: 203-214. DOI: 10.1109/METRIC.2002.1011339 |
0.687 |
|
2002 |
Khoshgoftaar TM, Seliya N. Improving usefulness of software quality classification models based on Boolean discriminant functions Proceedings - International Symposium On Software Reliability Engineering, Issre. 2002: 221-230. DOI: 10.1109/ISSRE.2002.1173256 |
0.719 |
|
2002 |
Khoshgoftaar TM, Yuan X, Allen EB, Jones WD, Hudepohl JP. Uncertain classification of fault-prone software modules Empirical Software Engineering. 7: 297-318. DOI: 10.1023/A:1020511004267 |
0.472 |
|
2001 |
Liu Y, Khoshgoftaar TM. Genetic programming model for software quality classification Proceedings of Ieee International Symposium On High Assurance Systems Engineering. 2001: 127-136. DOI: 10.1109/HASE.2001.966814 |
0.306 |
|
2001 |
Xu Z, Khoshgoftaar TM. Software quality prediction for high-assurance network telecommunications systems Computer Journal. 44: 558-568. DOI: 10.1093/Comjnl/44.6.557 |
0.544 |
|
2001 |
Khoshgoftaar TM, Allen EB. Empirical Assessment of a Software Metric: The Information Content of Operators Software Quality Journal. 9: 99-112. DOI: 10.1023/A:1016622818771 |
0.379 |
|
2001 |
Khoshgoftaar TM, Allen EB, Jones WD, Hudepohl JP. Data Mining of Software Development Databases Software Quality Journal. 9: 161-176. DOI: 10.1023/A:1013349419545 |
0.331 |
|
2001 |
Khoshgoftaar TM, Allen EB. Controlling overfitting in classification-tree models of software quality Empirical Software Engineering. 6: 59-79. DOI: 10.1023/A:1009803004576 |
0.47 |
|
2000 |
Ganesan K, Khoshgoftaar TM, Allen EB. Case-based software quality prediction International Journal of Software Engineering and Knowledge Engineering. 10: 139-152. DOI: 10.1142/S0218194000000092 |
0.434 |
|
2000 |
Khoshgoftaar TM, Allen EB, Busboom JC. Modeling software quality: The Software Measurement Analysis and Reliability Toolkit Proceedings - International Conference On Tools With Artificial Intelligence, Ictai. 2000: 54-61. DOI: 10.1109/TAI.2000.889846 |
0.347 |
|
2000 |
Khoshgoftaar TM, Shan R, Allen EB. Using product, process, and execution metrics to predict fault-prone software modules with classification trees Proceedings of Ieee International Symposium On High Assurance Systems Engineering. 2000: 301-310. DOI: 10.1109/HASE.2000.895475 |
0.312 |
|
2000 |
Khoshgoftaar TM, Allen EB. A practical classification-rule for software-quality models Ieee Transactions On Reliability. 49: 209-216. DOI: 10.1109/24.877340 |
0.35 |
|
2000 |
Khoshgoftaar TM, Alien EB, Jones WD, Hudepohl JP. Classification-tree models of software-quality over multiple releases Ieee Transactions On Reliability. 49: 4-11. DOI: 10.1109/24.855532 |
0.306 |
|
2000 |
Khoshgoftaar TM, Allen EB, Jones WD, Hudepohl JP. Annals of Software Engineering. 9: 103-116. DOI: 10.1023/A:1018972607783 |
0.42 |
|
2000 |
Khoshgoftaar TM, Yuan X, Allen EB. Balancing misclassification rates in classification-tree models of software quality Empirical Software Engineering. 5: 313-330. DOI: 10.1023/A:1009896203228 |
0.444 |
|
1999 |
Khoshgoftaar TM, Allen EB. Logistic regression modeling of software quality International Journal of Reliability, Quality and Safety Engineering. 6: 303-317. DOI: 10.1142/S0218539399000292 |
0.364 |
|
1999 |
KHOSHGOFTAAR TM, ALLEN EB, JONES WD, HUDEPOHL JP. DATA MINING FOR PREDICTORS OF SOFTWARE QUALITY International Journal of Software Engineering and Knowledge Engineering. 9: 547-563. DOI: 10.1142/S0218194099000309 |
0.455 |
|
1999 |
KHOSHGOFTAAR TM, ALLEN EB, NAIK A, JONES WD, HUDEPOHL JP. USING CLASSIFICATION TREES FOR SOFTWARE QUALITY MODELS: LESSONS LEARNED International Journal of Software Engineering and Knowledge Engineering. 9: 217-231. DOI: 10.1142/S0218194099000140 |
0.363 |
|
1999 |
Khoshgoftaar TM, Allen EB. Comparative study of ordering and classification of fault-prone software modules Empirical Software Engineering. 4: 159-186. DOI: 10.1023/A:1009876418873 |
0.429 |
|
1999 |
Khoshgoftaar TM, Allen EB. Impact of costs of misclassification on software quality modeling Computer Standards & Interfaces. 21: 164-165. DOI: 10.1016/S0920-5489(99)92173-6 |
0.34 |
|
1998 |
Khoshgoftaar TM. An information theoretic approach to predicting software faults International Journal of Reliability, Quality and Safety Engineering. 5: 227-248. DOI: 10.1142/S0218539398000224 |
0.417 |
|
1998 |
Khoshgoftaar TM, Allen EB, Halstead R, Trio GP, Flass RM. Using process history to predict software quality Ieee Computer. 31: 66-72. DOI: 10.1109/2.666844 |
0.39 |
|
1998 |
Khoshgoftaar TM, Allen EB. Classification of fault-prone software modules: prior probabilities, costs, and model evaluation Empirical Software Engineering. 3: 275-298. DOI: 10.1023/A:1009736205722 |
0.467 |
|
1997 |
Khoshgoftaar TM, Allen EB, Lanning DL. An information theory-based approach to quantifying the contribution of a software metric Journal of Systems and Software. 36: 103-112. DOI: 10.1016/0164-1212(95)00063-1 |
0.405 |
|
1996 |
Lanning DL, Khoshgoftaar TM, Guasti PJ. Improving neural network models of defect content in complex software systems Proceedings of Spie. 2760: 713-724. DOI: 10.1117/12.235963 |
0.367 |
|
1996 |
Khoshgoftaar TM, Szabo RM. Using neural networks to predict software faults during testing Ieee Transactions On Reliability. 45: 456-462. DOI: 10.1109/24.537016 |
0.391 |
|
1996 |
Khoshgoftaar TM. Analysis and differentiation of software system environments Software Quality Journal. 5: 127-139. DOI: 10.1007/Bf00419776 |
0.369 |
|
1995 |
Khoshgoftaar TM, Szabo RM, Guasti PJ. Exploring the behaviour of neural network software quality models Software Engineering Journal. 10: 89. DOI: 10.1049/Sej.1995.0012 |
0.406 |
|
1995 |
Khoshgoftaar TM, Pandya AS, Lanning DL. Application of neural networks for predicting program faults Annals of Software Engineering. 1: 141-154. DOI: 10.1007/Bf02249049 |
0.421 |
|
1995 |
Khoshgoftaar TM, Szabo RM. Investigating ARIMA models of software system quality Software Quality Journal. 4: 33-48. DOI: 10.1007/Bf00404648 |
0.428 |
|
1994 |
KHOSHGOFTAAR TM, SZABO RM. PREDICTING SOFTWARE QUALITY, DURING TESTING, USING NEURAL NETWORK MODELS: A COMPARATIVE STUDY International Journal of Reliability, Quality and Safety Engineering. 1: 303-319. DOI: 10.1142/S0218539394000222 |
0.416 |
|
1994 |
Khoshgoftaar TM, Lanning DL, Pandya AS. A Comparative Study of Pattern Recognition Techniques for Quality Evaluation of Telecommunications Software Ieee Journal On Selected Areas in Communications. 12: 279-291. DOI: 10.1109/49.272878 |
0.373 |
|
1994 |
Huynh KD, Khoshgoftaar TM. A performance analysis of advanced I/O architectures for PC-based network file servers Distributed Systems Engineering. 1: 332-344. DOI: 10.1088/0967-1846/1/6/002 |
0.313 |
|
1994 |
Khoshgoftaar TM, Szabo RM, Woodcock TG. An empirical study of program quality during testing and maintenance Software Quality Journal. 3: 137-151. DOI: 10.1007/Bf00402294 |
0.394 |
|
1994 |
Khoshgoftaar TM, Allen EB. Applications of information theory to software engineering measurement Software Quality Journal. 3: 79-103. DOI: 10.1007/Bf00213632 |
0.354 |
|
1993 |
Huynh K, Khoshgoftaar T, Marazas G. A high-level performance analysis of the IBM subsystem control block (SCB) architecture Microprocessing and Microprogramming. 36: 109-125. DOI: 10.1016/0165-6074(93)90252-G |
0.335 |
|
1992 |
Khoshgoftaar TM, Bhattacharyya BB, Richardson GD. Predicting Software Errors, During Development, Using Nonlinear Regression Models: A Comparative Study Ieee Transactions On Reliability. 41: 390-395. DOI: 10.1109/24.159804 |
0.418 |
|
1992 |
Huynh KD, Fernandez EB, Khoshgoftaar TM. A workload model for frame-based real-time applications on distributed systems The Journal of Systems and Software. 18: 255-271. DOI: 10.1016/0164-1212(92)90102-P |
0.349 |
|
1992 |
Khoshgoftaar TM, Munson JC, Ravichandran S. Comparative aspects of software complexity metrics and program modules - a multidimensional scaling approach Software Quality Journal. 1: 159-173. DOI: 10.1007/Bf01720923 |
0.332 |
|
1992 |
Khoshgoftaar TM, Woodcock TG. Software reliability model selection Quality and Reliability Engineering. 8: 457-469. DOI: 10.1002/Qre.4680080509 |
0.396 |
|
1991 |
Leu S, Fernandez EB, Khoshgoftaar T. Fault-tolerant software reliability modeling using Petri nets Microelectronics Reliability. 31: 645-667. DOI: 10.1016/0026-2714(91)90008-U |
0.351 |
|
Show low-probability matches. |