Year |
Citation |
Score |
2019 |
Martinsson A, Lu J, Leimkuhler B, Vanden-Eijnden E. The simulated tempering method in the infinite switch limit with adaptive weight learning Journal of Statistical Mechanics: Theory and Experiment. 2019: 013207. DOI: 10.1088/1742-5468/Aaf323 |
0.308 |
|
2019 |
Bethune I, Banisch R, Breitmoser E, Collis AB, Gibb G, Gobbo G, Matthews C, Ackland GJ, Leimkuhler BJ. MIST: A simple and efficient molecular dynamics abstraction library for integrator development Computer Physics Communications. 236: 224-236. DOI: 10.1016/j.cpc.2018.10.006 |
0.324 |
|
2018 |
Fass J, Sivak DA, Crooks GE, Beauchamp KA, Leimkuhler B, Chodera JD. Quantifying Configuration-Sampling Error in Langevin Simulations of Complex Molecular Systems. Entropy (Basel, Switzerland). 20. PMID 30393452 DOI: 10.3390/E20050318 |
0.313 |
|
2018 |
Shang X, Kröger M, Leimkuhler B. Assessing numerical methods for molecular and particle simulation. Soft Matter. 13: 8565-8578. PMID 29099134 DOI: 10.1039/C7SM01526G |
0.422 |
|
2017 |
Leimkuhler B, Matthews C, Weare J. Ensemble preconditioning for Markov chain Monte Carlo simulation Statistics and Computing. 28: 277-290. DOI: 10.1007/S11222-017-9730-1 |
0.346 |
|
2016 |
Leimkuhler B, Matthews C. Efficient molecular dynamics using geodesic integration and solvent-solute splitting. Proceedings. Mathematical, Physical, and Engineering Sciences / the Royal Society. 472: 20160138. PMID 27279779 DOI: 10.1098/rspa.2016.0138 |
0.367 |
|
2016 |
Leimkuhler B, Shang X. Adaptive thermostats for noisy gradient systems Siam Journal On Scientific Computing. 38: A712-A736. DOI: 10.1137/15M102318X |
0.43 |
|
2016 |
Leimkuhler B, Shang X. Pairwise adaptive thermostats for improved accuracy and stability in dissipative particle dynamics Journal of Computational Physics. 324: 174-193. DOI: 10.1016/j.jcp.2016.07.034 |
0.416 |
|
2015 |
Leimkuhler B, Shang X. On the numerical treatment of dissipative particle dynamics and related systems Journal of Computational Physics. 280: 72-95. DOI: 10.1016/j.jcp.2014.09.008 |
0.442 |
|
2014 |
Leimkuhler B, Matthews C, Tretyakov MV. On the long-time integration of stochastic gradient systems Proceedings of the Royal Society a: Mathematical, Physical and Engineering Sciences. 470. DOI: 10.1098/rspa.2014.0120 |
0.415 |
|
2014 |
Leimkuhler B, Matthews C, Stoltz G. The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics Ima Journal of Numerical Analysis. 36: 13-79. DOI: 10.1093/imanum/dru056 |
0.399 |
|
2013 |
Leimkuhler B, Matthews C. Robust and efficient configurational molecular sampling via Langevin dynamics. The Journal of Chemical Physics. 138: 174102. PMID 23656109 DOI: 10.1063/1.4802990 |
0.345 |
|
2013 |
Leimkuhler B, Matthews C. Rational construction of stochastic numerical methods for molecular sampling Applied Mathematics Research Express. 2013: 34-56. DOI: 10.1093/amrx/abs010 |
0.413 |
|
2011 |
Jones A, Leimkuhler B. Adaptive stochastic methods for sampling driven molecular systems. The Journal of Chemical Physics. 135: 084125. PMID 21895177 DOI: 10.1063/1.3626941 |
0.337 |
|
2011 |
Bajars J, Frank J, Leimkuhler B. Stochastic-dynamical thermostats for constraints and stiff restraints European Physical Journal: Special Topics. 200: 131-152. DOI: 10.1140/epjst/e2011-01522-0 |
0.432 |
|
2011 |
Leimkuhler B, Noorizadeh E, Penrose O. Comparing the Efficiencies of Stochastic Isothermal Molecular Dynamics Methods Journal of Statistical Physics. 143: 921-942. DOI: 10.1007/S10955-011-0210-2 |
0.379 |
|
2010 |
Dubinkina S, Frank J, Leimkuhler B. Simplified modelling of a thermal bath, with application to a fluid vortex system Multiscale Modeling and Simulation. 8: 1882-1901. DOI: 10.1137/100795152 |
0.38 |
|
2009 |
Leimkuhler B, Noorizadeh E, Theil F. A gentle stochastic thermostat for molecular dynamics Journal of Statistical Physics. 135: 261-277. DOI: 10.1007/s10955-009-9734-0 |
0.314 |
|
2007 |
Bond SD, Leimkuhler BJ. Stabilized integration of Hamiltonian systems with hard-sphere inequality constraints Siam Journal On Scientific Computing. 30: 134-147. DOI: 10.1137/06066552X |
0.657 |
|
2007 |
Jia Z, Leimkuhler B. Molecular simulation in the canonical ensemble and beyond Mathematical Modelling and Numerical Analysis. 41: 333-350. DOI: 10.1051/m2an:2007019 |
0.371 |
|
2007 |
Bond SD, Leimkuhler BJ. Molecular dynamics and the accuracy of numerically computed averages Acta Numerica. 16: 1-65. DOI: 10.1017/S0962492906280012 |
0.633 |
|
2006 |
Jia Z, Leimkuhler B. Geometric integrators for multiple time-scale simulation Journal of Physics a: Mathematical and General. 39: 5379-5403. DOI: 10.1088/0305-4470/39/19/S04 |
0.485 |
|
2006 |
Barth E, Leimkuhler B, Sweet C. Approach to Thermal Equilibrium in Biomolecular Simulation Lecture Notes in Computational Science and Engineering. 49: 125-140. |
0.369 |
|
2005 |
Jia Z, Leimkuhler BJ. A projective thermostatting dynamics technique Multiscale Modeling and Simulation. 4: 563-583. DOI: 10.1137/040603863 |
0.359 |
|
2003 |
Laird BB, Leimkuhler BJ. Generalized dynamical thermostating technique. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 68: 016704. PMID 12935284 DOI: 10.1103/Physreve.68.016704 |
0.419 |
|
2003 |
Barth EJ, Laird BB, Leimkuhler BJ. Generating generalized distributions from dynamical simulation Journal of Chemical Physics. 118: 5759-5768. DOI: 10.1063/1.1557413 |
0.314 |
|
2003 |
Jia Z, Leimkuhler B. A parallel multiple time-scale reversible integrator for dynamics simulation Future Generation Computer Systems. 19: 415-424. DOI: 10.1016/S0167-739X(02)00168-1 |
0.391 |
|
2003 |
Bond SD, Laird BB, Leimkuhler BJ. On the approximation of Feynman-Kac path integrals Journal of Computational Physics. 185: 472-483. DOI: 10.1016/S0021-9991(02)00066-9 |
0.641 |
|
2002 |
Leimkuhler B. An efficient multiple time-scale reversible integrator for the gravitational N-body problem Applied Numerical Mathematics. 43: 175-190. DOI: 10.1016/S0168-9274(02)00124-1 |
0.37 |
|
2002 |
Leimkuhler B. A separated form of Nosé dynamics for constant temperature and pressure simulation Computer Physics Communications. 148: 206-213. DOI: 10.1016/S0010-4655(02)00554-4 |
0.358 |
|
2001 |
Kværnø A, Leimkuhler B. A time-reversible, regularized, switching integrator for the N-body problem Siam Journal On Scientific Computing. 22: 1016-1035. DOI: 10.1137/S1064827599355566 |
0.444 |
|
2001 |
Holder T, Leimkuhler B, Reich S. Explicit variable step-size and time-reversible integration Applied Numerical Mathematics. 39: 367-377. DOI: 10.1016/S0168-9274(01)00089-7 |
0.399 |
|
2001 |
Leimkuhler BJ. An improved dynamical formulation for constant temperature and pressure dynamics, with application to particle fluid models Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2074. DOI: 10.1007/3-540-45718-6_119 |
0.31 |
|
2001 |
Leimkuhler B, Reich S. A Reversible Averaging Integrator for Multiple Time-Scale Dynamics Journal of Computational Physics. 171: 95-114. DOI: 10.1006/jcph.2001.6774 |
0.383 |
|
2000 |
Houndonougbo YA, Laird BB, Leimkuhler BJ. A molecular dynamics algorithm for mixed hard-core/continuous potentials Molecular Physics. 98: 309-316. DOI: 10.1080/00268970009483294 |
0.43 |
|
1999 |
Bond SD, Leimkuhler BJ, Laird BB. The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics Journal of Computational Physics. 151: 114-134. DOI: 10.1006/Jcph.1998.6171 |
0.664 |
|
1999 |
Leimkuhler B. Reversible adaptive regularization: Perturbed Kepler motion and classical atomic trajectories Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences. 357: 1101-1133. |
0.361 |
|
1999 |
Leimkuhler B. Reversible adaptive regularization methods for atomic N-body problems in applied fields Applied Numerical Mathematics. 29: 31-43. |
0.302 |
|
1999 |
Barth E, Leimkuhler B, Reich S. Time-reversible variable-stepsize integrator for constrained dynamics Siam Journal On Scientific Computing. 21: 1027-1044. |
0.446 |
|
1998 |
Bond SD, Leimkuhler BJ. Time-transformations for reversible variable stepsize integration Numerical Algorithms. 19: 55-71. |
0.617 |
|
1998 |
Leimkuhler B. Timestep acceleration of waveform relaxation Siam Journal On Numerical Analysis. 35: 31-50. |
0.359 |
|
1997 |
Kol A, Laird BB, Leimkuhler BJ. A symplectic method for rigid-body molecular simulation Journal of Chemical Physics. 107: 2580-2588. DOI: 10.1063/1.474596 |
0.438 |
|
1997 |
Leimkuhler BJ, Van Vleck ES. Orthosymplectic integration of linear Hamiltonian systems Numerische Mathematik. 77: 269-282. |
0.374 |
|
1997 |
Huang W, Leimkuhler B. The adaptive Verlet method Siam Journal On Scientific Computing. 18: 239-256. |
0.43 |
|
1997 |
Dullweber A, Leimkuhler B, McLachlan R. Symplectic splitting methods for rigid body molecular dynamics Journal of Chemical Physics. 107: 5840-5851. |
0.447 |
|
1995 |
Barth E, Kuczera K, Leimkuhler B, Skeel RD. Algorithms for constrained molecular dynamics Journal of Computational Chemistry. 16: 1192-1209. DOI: 10.1002/Jcc.540161003 |
0.373 |
|
1994 |
Leimkuhler BJ. Symplectic numerical integrators in constrained Hamiltonian systems Journal of Computational Physics. 112: 117-125. DOI: 10.1006/Jcph.1994.1085 |
0.47 |
|
1993 |
Leimkuhler B. Relaxation techniques in multibody dynamics Transactions of the Canadian Society For Mechanical Engineering. 17: 459-471. |
0.387 |
|
1991 |
Leimkuhler B, Miekkala U, Nevanlinna O. Waveform relaxation for linear RC-circuits Impact of Computing in Science and Engineering. 3: 123-145. DOI: 10.1016/0899-8248(91)90012-J |
0.304 |
|
1985 |
Gear CW, Leimkuhler B, Gupta GK. Automatic integration of Euler-Lagrange equations with constraints Journal of Computational and Applied Mathematics. 12: 77-90. DOI: 10.1016/0377-0427(85)90008-1 |
0.324 |
|
Show low-probability matches. |